Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development

Abstract

Mesenchymal stem cells (MSCs) have affinity to tumor sites where they home, affecting their biology and growth. Previously, we have isolated mesenchymal cells from the decidua of the human placenta named as decidua-derived MSCs (DMSCs). The aims of the present study were to investigate the migration capacity of DMSCs in vitro, and in vivo in a preclinical model of mammary tumors induced by N-nitroso-N-methylurea (NMU). Additionally, we assessed the safety of DMSC administration in vivo and their effect on tumor growth. In vitro studies showed that DMSCs significantly migrate toward both, healthy human breast tissue and breast adenocarcinoma. Nevertheless, the effect on DMSC migration was significantly higher in the presence of tumor tissue. DMSCs also significantly migrated in vitro in the presence of NMU-mammary tumor homogenate when compared with control media alone. In vivo studies showed both migration and engraftment of DMSCs into NMU-induced tumors. Interestingly, DMSCs showed an inhibitory effect on the growth of primary tumors and in the development of new tumors. DMSCs did not affect the growth of secondary tumors, although secondary tumors appeared 2 weeks later, and the number of secondary tumors was lower in the DMSC-treated rats as compared with vehicle-treated rats. To our knowledge, this is the first report showing placental MSCs effect on tumor growth. In conclusion, DMSCs could serve as a therapeutic agent themselves and as a cellular vehicle of anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ali S, Coombes RC . Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia 2000; 5: 271–281.

    Article  CAS  PubMed  Google Scholar 

  2. Dorgan JF, Stanczyk FZ, Kahle LL, Brinton LA . Prospective case-control study of premenopausal serum estradiol and testosterone levels and breast cancer risk. Breast Cancer Res 2010; 12: R98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ali S, Buluwela L, Coombes RC . Antiestrogens and their therapeutic applications in breast cancer and other diseases. Annu Rev Med 2000; 5: 271–281.

    CAS  Google Scholar 

  4. Garola R, Levy CM, Vegh I, Magin C, Martinez JC, Hecker E . In vivo blockade of the estradiol-binding-protein (EBP) by clomiphene citrate in human breast cancer. Oncology 1974; 30: 105–121.

    Article  PubMed  Google Scholar 

  5. Miller TW, Balko JM, Ghazoui Z, Dunbier A, Anderson H, Dowsett M et al. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin Cancer Res 2011; 17: 2024–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh B, Bhat NK, Bhat HK . Partial inhibition of estrogen-induced mammary carcinogenesis in rats by tamoxifen: balance between oxidant stress and estrogen responsiveness. PLoS One 2011; 6: e25125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gullino PM, Pettigrew HM, Grantham FH . N-nitrosomethylurea as mammary gland carcinogen in rats. J Natl Cancer Inst 1975; 54: 401–414.

    CAS  PubMed  Google Scholar 

  8. Vegh I, de Salamanca RE . Prolactin, TNF alpha and nitric oxide expression in nitroso-N-methylurea-induced-mammary tumours. J Carcinog 2007; 6: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huggins CB, Ueda N, Wiessler M . N-Nitroso-N-methylurea elicits mammary cancer in resistant and sensitive rat strains. Proc Natl Acad Sci USA 1981; 78: 1185–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ahlers I, Solar P, Buresova A, Ahlersova E . Very low sensitivity of Wistar:Han female rats to chemocarcinogens in mammary carcinogenesis induction. Neoplasma 1998; 45: 373–376.

    CAS  PubMed  Google Scholar 

  11. Russo J, Russo IH . Experimentally induced mammary tumors in rats. Breast Cancer Res Treat 1996; 39: 7–20.

    Article  CAS  PubMed  Google Scholar 

  12. Russo J, Russo IH . Atlas and histologic classification of tumors of the rat mammary gland. J Mammary Gland Biol Neoplasia 2000; 5: 187–200.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Hu L, Yao R, Wang M, Crist KA, Grubbs CJ et al. Altered gene expression profile in chemically induced rat mammary adenocarcinomas and its modulation by an aromatase inhibitor. Oncogene 2001; 20: 7710–7721.

    Article  CAS  PubMed  Google Scholar 

  14. Shan L, Yu M, Snyderwine EG . Global gene expression profiling of chemically induced rat mammary gland carcinomas and adenomas. Toxicol Pathol 2005; 33: 768–775.

    Article  CAS  PubMed  Google Scholar 

  15. Chan MM, Lu X, Merchant FM, Iglehart JD, Miron PL . Serial transplantation of NMU-induced rat mammary tumors: a model of human breast cancer progression. Int J Cancer 2007; 121: 474–485.

    Article  CAS  PubMed  Google Scholar 

  16. Chan MM, Lu X, Merchant FM, Iglehart JD, Miron PL . Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer. Carcinogenesis 2005; 26: 1343–1353.

    Article  CAS  PubMed  Google Scholar 

  17. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  18. Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F . Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 2007; 86: 8–16.

    Article  CAS  PubMed  Google Scholar 

  19. Vegh I, Flores AI . Biomarkers, stem cell and esophageal cancer. In: Jazii FR, (ed). Esophageal Cancer- Cell and Molecular Biology, Biomarkers, Nutrition and Treatment InTech. March, 2012 Rijeka, Croatia, 2012 pp 49–78.

    Google Scholar 

  20. Toyoda M, Takahashi H, Umezawa A . Ways for a mesenchymal stem cell to live on its own: maintaining an undifferentiated state ex vivo. Int J Hematol 2007; 86: 1–4.

    Article  CAS  PubMed  Google Scholar 

  21. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

    Article  CAS  PubMed  Google Scholar 

  22. Aggarwal S, Pittenger MF . Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  23. Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noel D . Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 2010; 1: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Macias MI, Grande J, Moreno A, Dominguez I, Bornstein R, Flores AI . Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. Am J Obstet Gynecol 2010; 203: 495 e499–495 e423.

    Article  Google Scholar 

  25. Dvorak HF . Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–1659.

    Article  CAS  PubMed  Google Scholar 

  26. Djouad F, Bony C, Apparailly F, Louis-Plence P, Jorgensen C, Noel D . Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation 2006; 82: 1060–1066.

    Article  PubMed  Google Scholar 

  27. Haynesworth SE, Baber MA, Caplan AI . Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996; 166: 585–592.

    Article  CAS  PubMed  Google Scholar 

  28. Mershon J, Sall W, Mitchner N, Ben-Jonathan N . Prolactin is a local growth factor in rat mammary tumors. Endocrinology 1995; 136: 3619–3623.

    Article  CAS  PubMed  Google Scholar 

  29. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F . Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 2008; 15: 730–738.

    Article  CAS  PubMed  Google Scholar 

  30. Bexell D, Scheding S, Bengzon J . Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors. Mol Ther 2010; 18: 1067–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K et al. Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 2010; 12: 615–625.

    Article  CAS  PubMed  Google Scholar 

  32. Flores AI, Bedoya F, Grau M, de Salamanca RE, Vegh I . In vivo effect of an luteinizing hormone-releasing hormone analog on vascular endothelial growth factor and epidermal growth factor receptor expression in mammary tumors. J Carcinog 2009; 8: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ankrum J, Karp JM . Mesenchymal stem cell therapy: Two steps forward, one step back. Trends Mol Med 2010; 16: 203–209.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sorrell JM, Caplan AI . Topical delivery of mesenchymal stem cells and their function in wounds. Stem Cell Res Ther 2010; 1: 30.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318.

    Article  CAS  PubMed  Google Scholar 

  36. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H . Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008; 180: 2581–2587.

    Article  CAS  PubMed  Google Scholar 

  37. Satake K, Lou J, Lenke LG . Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine (Phila Pa 1976) 2004; 29: 1971–1979.

    Article  Google Scholar 

  38. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M . Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608.

    CAS  PubMed  Google Scholar 

  39. Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB . Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 2008; 26: 99–107.

    Article  CAS  PubMed  Google Scholar 

  40. Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM . Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J 2007; 21: 3763–3770.

    Article  CAS  PubMed  Google Scholar 

  41. Montzka K, Fuhrmann T, Muller-Ehmsen J, Woltje M, Brook GA . Growth factor and cytokine expression of human mesenchymal stromal cells is not altered in an in vitro model of tissue damage. Cytotherapy 2010; 12: 870–880.

    Article  CAS  PubMed  Google Scholar 

  42. Maijenburg MW, Noort WA, Kleijer M, Kompier CJ, Weijer K, van Buul JD et al. Cell cycle and tissue of origin contribute to the migratory behaviour of human fetal and adult mesenchymal stromal cells. Br J Haematol 2010; 148: 428–440.

    Article  PubMed  Google Scholar 

  43. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 2005; 112: 1451–1461.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Deak E, Seifried E, Henschler R . Homing pathways of mesenchymal stromal cells (MSCs) and their role in clinical applications. Int Rev Immunol 2010; 29: 514–529.

    Article  CAS  PubMed  Google Scholar 

  45. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI . The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001; 169: 12–20.

    Article  CAS  PubMed  Google Scholar 

  46. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 2009; 27: 2614–2623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Doucette T, Rao G, Yang Y, Gumin J, Shinojima N, Bekele BN et al. Mesenchymal stem cells display tumor-specific tropism in an RCAS/Ntv-a glioma model. Neoplasia 2011; 13: 716–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F . Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 2011; 29: 11–19.

    Article  CAS  PubMed  Google Scholar 

  49. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank Rafael Borsntein, MD, PhD, for his contribution to the revision and critical reading of the manuscript. This work was supported by the following grants to AI. Dr Flores: the Spanish Institute of Health Carlos III (FIS PI080137) and the MMA Foundation (FMMA 2008-108).

Author contributions

IV and AIF contributed to conception and design of the research, acquisition of data, analysis and interpretation of data, drafting and critically revision of the manuscript. MG (VMD) and MG (LA) contributed to collection of data and final approval of the manuscript. PT contributed to collection of data, data analysis and final approval of the manuscript. JG provided human material of study, and final approval of the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A I Flores.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Part of this work was presented at the following conferences: The 7th Stem Cell Research and Therapeutics Conference, Boston, MA, USA, 26–27 May 2011 (Poster); CNIO Frontiers Meetings: ‘Recapturing Pluoripotency: Links Between Cellular Reprogramming and Cancer’, Madrid, Spain, 7–9 November 2011 (Poster); and The 8th Stem Cell Research and Regenerative Medicine, 19–20 April 2012 in Boston, MA (Invited Speaker).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vegh, I., Grau, M., Gracia, M. et al. Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development. Cancer Gene Ther 20, 8–16 (2013). https://doi.org/10.1038/cgt.2012.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.71

Keywords

This article is cited by

Search

Quick links