Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Retargeting adenoviral vectors to improve gene transfer into tumors

Abstract

Gene targeting to tumors using adenoviral (Ad) vectors holds great potential for cancer imaging and therapy, but the limited efficacy of current methods used to improve delivery to target tissues and reduce unwanted interactions remain substantial barriers to further development. Progress in characterizing the set of molecular interactions used by Ad vectors to infect particular tissues has aided the development of novel strategies for retargeting vectors to tumor cells. One method is chemical retargeting of adenovirus using bispecific antibodies (bsAbs) against both viral capsid proteins and tumor-specific cell surface molecules. This approach can be combined either with competitive inhibitors designed to reduce viral tropism in undesired tissues, or with traditional therapeutics to increase the expression of surface molecules for improved tumor targeting. Ablating liver cell-specific interactions through mutation of capsid proteins or chemical means are promising strategies for reducing adenovirus-induced liver toxicity. The nature of tumor neovasculature also influences Ad delivery, and the use of vascular disrupting agents (VDAs) such as combretastatin can help elucidate these contributions. In this investigation, we evaluate a variety of these methods for retargeting Ad vectors to tumor cells in vitro and in vivo, and assess the contributions of specific molecular and tissue interactions that affect Ad transgene delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gerard RD, Meidell RS . Adenovirus vectors. In: Hames BD, Glover D (eds). DNA Cloning: A Practical Approach. Oxford University Press: Oxford, 1995, pp 285–307.

    Google Scholar 

  2. Glasgow JN, Everts M, Curiel DT . Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 2006; 13: 830–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94: 3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dechecchi MC, Melotti P, Bonizzato A, Santacatterina M, Chilosi M, Cabrini G . Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001; 75: 8772–8780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dechecchi MC, Tamanini A, Bonizzato A, Cabrini G . Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 2000; 268: 382–390.

    Article  CAS  PubMed  Google Scholar 

  6. Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 2008; 105: 5483–5488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008; 132: 397–409.

    Article  CAS  PubMed  Google Scholar 

  8. Alba R, Bradshaw AC, Parker AL, Bhella D, Waddington SN, Nicklin SA et al. Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood 2009; 114: 965–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kremer EJ . Mutagenesis of hexon ‘FX’ hepatic tropism. Blood 2009; 114: 929–930.

    Article  CAS  PubMed  Google Scholar 

  10. Vigant F, Descamps D, Jullienne B, Esselin S, Connault E, Opolon P et al. Substitution of hexon hypervariable region 5 of adenovirus serotype 5 abrogates blood factor binding and limits gene transfer to liver. Mol Ther 2008; 16: 1474–1480.

    Article  CAS  PubMed  Google Scholar 

  11. Li Q, Kay MA, Finegold M, Stratford-Perricaudet LD, Woo SL . Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum Gene Ther 1993; 4: 403–409.

    Article  CAS  PubMed  Google Scholar 

  12. Sharma A, Li X, Bangari DS, Mittal SK . Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143: 184–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bayo-Puxan N, Gimenez-Alejandre M, Lavilla-Alonso S, Gros A, Cascallo M, Hemminki A et al. Replacement of adenovirus type 5 fiber shaft heparan sulfate proteoglycan-binding domain with RGD for improved tumor infectivity and targeting. Hum Gene Ther 2009; 20: 1214–1221.

    Article  CAS  PubMed  Google Scholar 

  14. Gimenez-Alejandre M, Cascallo M, Bayo-Puxan N, Alemany R . Coagulation factors determine tumor transduction in vivo. Hum Gene Ther 2008; 19: 1415–1419.

    Article  CAS  PubMed  Google Scholar 

  15. Parker AL, Waddington SN, Nicol CG, Shayakhmetov DM, Buckley SM, Denby L et al. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood 2006; 108: 2554–2561.

    Article  CAS  PubMed  Google Scholar 

  16. Waddington SN, Parker AL, Havenga M, Nicklin SA, Buckley SM, McVey JH et al. Targeting of adenovirus serotype 5 (Ad5) and 5/47 pseudotyped vectors in vivo: fundamental involvement of coagulation factors and redundancy of CAR binding by Ad5. J Virol 2007; 81: 9568–9571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shashkova EV, Doronin K, Senac JS, Barry MA . Macrophage depletion combined with anticoagulant therapy increases therapeutic window of systemic treatment with oncolytic adenovirus. Cancer Res 2008; 68: 5896–5904.

    Article  CAS  PubMed  Google Scholar 

  18. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT . Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol 2000; 74: 6875–6884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT . Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol 1996; 14: 1574–1578.

    Article  CAS  PubMed  Google Scholar 

  20. Goldman CK, Rogers BE, Douglas JT, Sosnowski BA, Ying W, Siegal GP et al. Targeted gene delivery to Kaposi's sarcoma cells via the fibroblast growth factor receptor. Cancer Res 1997; 57: 1447–1451.

    CAS  PubMed  Google Scholar 

  21. Gu DL, Gonzalez AM, Printz MA, Doukas J, Ying W, D’Andrea M et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res 1999; 59: 2608–2614.

    CAS  PubMed  Google Scholar 

  22. Kashentseva EA, Seki T, Curiel DT, Dmitriev IP . Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Res 2002; 62: 609–616.

    CAS  PubMed  Google Scholar 

  23. Li HJ, Everts M, Pereboeva L, Komarova S, Idan A, Curiel DT et al. Adenovirus tumor targeting and hepatic untargeting by a coxsackie/adenovirus receptor ectodomain anti-carcinoembryonic antigen bispecific adapter. Cancer Res 2007; 67: 5354–5361.

    Article  CAS  PubMed  Google Scholar 

  24. Reynolds PN, Zinn KR, Gavrilyuk VD, Balyasnikova IV, Rogers BE, Buchsbaum DJ et al. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol Ther 2000; 2: 562–578.

    Article  CAS  PubMed  Google Scholar 

  25. Israel BF, Pickles RJ, Segal DM, Gerard RD, Kenney SC . Enhancement of adenovirus vector entry into CD70-positive B-cell Lines by using a bispecific CD70-adenovirus fiber antibody. J Virol 2001; 75: 5215–5221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Itoh A, Okada T, Mizuguchi H, Hayakawa T, Mizukami H, Kume A et al. A soluble CAR-SCF fusion protein improves adenoviral vector-mediated gene transfer to c-Kit-positive hematopoietic cells. J Gene Med 2003; 5: 929–940.

    Article  CAS  PubMed  Google Scholar 

  27. Kim J, Smith T, Idamakanti N, Mulgrew K, Kaloss M, Kylefjord H et al. Targeting adenoviral vectors by using the extracellular domain of the coxsackie-adenovirus receptor: improved potency via trimerization. J Virol 2002; 76: 1892–1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hogg RT, Garcia JA, Gerard RD . Adenoviral targeting of gene expression to tumors. Cancer Gene Ther 2010; 17: 375–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ocak I, Baluk P, Barrett T, McDonald DM, Choyke P . The biologic basis of in vivo angiogenesis imaging. Front Biosci 2007; 12: 3601–3616.

    Article  CAS  PubMed  Google Scholar 

  30. Ran S, Downes A, Thorpe PE . Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 2002; 62: 6132–6140.

    CAS  PubMed  Google Scholar 

  31. Ran S, Thorpe PE . Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy. Int J Radiat Oncol Biol Phys 2002; 54: 1479–1484.

    Article  CAS  PubMed  Google Scholar 

  32. Ran S, Gao B, Duffy S, Watkins L, Rote N, Thorpe PE . Infarction of solid Hodgkin's tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res 1998; 58: 4646–4653.

    CAS  PubMed  Google Scholar 

  33. Ran S, He J, Huang X, Soares M, Scothorn D, Thorpe PE . Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 2005; 11: 1551–1562.

    Article  CAS  PubMed  Google Scholar 

  34. Huang X, Bennett M, Thorpe PE . A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice. Cancer Res 2005; 65: 4408–4416.

    Article  CAS  PubMed  Google Scholar 

  35. Luster TA, He J, Huang X, Maiti SN, Schroit AJ, de Groot PG et al. Plasma protein beta-2-glycoprotein 1 mediates interaction between the anti-tumor monoclonal antibody 3G4 and anionic phospholipids on endothelial cells. J Biol Chem 2006; 281: 29863–29871.

    Article  CAS  PubMed  Google Scholar 

  36. Jennewein M, Lewis MA, Zhao D, Tsyganov E, Slavine N, He J et al. Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Clin Cancer Res 2008; 14: 1377–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanthou C, Tozer GM . Microtubule depolymerizing vascular disrupting agents: novel therapeutic agents for oncology and other pathologies. Int J Exp Pathol 2009; 90: 284–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tozer GM, Kanthou C, Baguley BC . Disrupting tumour blood vessels. Nat Rev Cancer 2005; 5: 423–435.

    Article  CAS  PubMed  Google Scholar 

  39. Michieli P . Hypoxia, angiogenesis and cancer therapy: to breathe or not to breathe? Cell Cycle 2009; 8: 3291–3296.

    Article  CAS  PubMed  Google Scholar 

  40. Kerbel RS . Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 2006; 312: 1171–1175.

    Article  CAS  PubMed  Google Scholar 

  41. Herz J, Gerard RD . Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA 1993; 90: 2812–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ . Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999; 286: 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  43. Smith TA, Idamakanti N, Rollence ML, Marshall-Neff J, Kim J, Mulgrew K et al. Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 2003; 14: 777–787.

    Article  CAS  PubMed  Google Scholar 

  44. Smith TA, Idamakanti N, Marshall-Neff J, Rollence ML, Wright P, Kaloss M et al. Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 2003; 14: 1595–1604.

    Article  CAS  PubMed  Google Scholar 

  45. Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M . Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol 1996; 70: 4805–4810.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kopfler WP, Willard M, Betz T, Willard JE, Gerard RD, Meidell RS . Adenovirus-mediated transfer of a gene encoding human apolipoprotein A-I into normal mice increases circulating high-density lipoprotein cholesterol. Circulation 1994; 90: 1319–1327.

    Article  CAS  PubMed  Google Scholar 

  47. Brennan M, Davison PF, Paulus H . Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 1985; 229: 81–83.

    Article  CAS  PubMed  Google Scholar 

  48. Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE . Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 1997; 275: 547–550.

    Article  CAS  PubMed  Google Scholar 

  49. Henry LJ, Xia D, Wilke ME, Deisenhofer J, Gerard RD . Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J Virol 1994; 68: 5239–5246.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zinn KR, Douglas JT, Smyth CA, Liu HG, Wu Q, Krasnykh VN et al. Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob (serotype 5). Gene Ther 1998; 5: 798–808.

    Article  CAS  PubMed  Google Scholar 

  51. Bayo-Puxan N, Cascallo M, Gros A, Huch M, Fillat C, Alemany R . Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. J Gen Virol 2006; 87: 2487–2495.

    Article  CAS  PubMed  Google Scholar 

  52. Niu G, Xiong Z, Cheng Z, Cai W, Gambhir SS, Xing L et al. In vivo bioluminescence tumor imaging of RGD peptide-modified adenoviral vector encoding firefly luciferase reporter gene. Mol Imaging Biol 2007; 9: 126–134.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xiong Z, Cheng Z, Zhang X, Patel M, Wu JC, Gambhir SS et al. Imaging chemically modified adenovirus for targeting tumors expressing integrin alphavbeta3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene. J Nucl Med 2006; 47: 130–139.

    CAS  PubMed  Google Scholar 

  54. Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A . Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 2005; 79: 7478–7491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jonsson MI, Lenman AE, Frangsmyr L, Nyberg C, Abdullahi M, Arnberg N . Coagulation factors IX and X enhance binding and infection of adenovirus types 5 and 31 in human epithelial cells. J Virol 2009; 83: 3816–3825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank Julie Poirot and Jessica Mullens for technical help with recombinant virus construction and preparation, and Shuzhen Li for preparation of the bispecific antibodies and providing the purified β2GP1 protein. Paul Card helped to prepare the manuscript for publication. Bavituximab was generously provided by Peregrine Pharmaceuticals Inc., Tustin, CA, and Oxigene (Waltham, MA) generously provided the combretastatin 1 phosphate. Optical imaging was facilitated by the UT Southwestern Small Animal Imaging Research Program funded by NCI U24 CA126608. This work was supported by a Texas Higher Education Coordinating Board Advanced Technology Program grant and by NIH R01 CA115935 to RDG, and by the Gillson Longenbaugh Foundation to PT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R D Gerard.

Ethics declarations

Competing interests

Both Dr Thorpe and Dr Gerard hold equity interests in Peregrine Pharmaceuticals, a company that is commercially developing the anti-PS antibody bavituximab. Dr Thorpe is also on the advisory board of the company and receives research support. Mr Hogg declares no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogg, R., Thorpe, P. & Gerard, R. Retargeting adenoviral vectors to improve gene transfer into tumors. Cancer Gene Ther 18, 275–287 (2011). https://doi.org/10.1038/cgt.2010.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.78

Keywords

This article is cited by

Search

Quick links