Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

The use of fluorescence in situ hybridisation combined with premature chromosome condensation for the identification of chromosome damage

Abstract

The technique of fusing mitotic cells to interphase cells, thereby producing condensation of the chromosomes of the interphase cell (so-called 'premature chromosome condensation' or PCC), has allowed detection of the initial number of chromosome breaks and their repair following ionising radiation. However, the difficulty and tedium of scoring all the chromosome fragments, as well as the inability to readily detect exchange aberrations, has limited the use of PCC. We describe here the use of the recently developed technique of fluorescence in situ hybridisation with whole chromosome libraries to stain individual human chromosomes (also called 'chromosome painting') with the PCC's and show that this overcomes most of the limitations with the analysis of PCC's. First, by focusing on a single chromosome, scoring of breaks in the target chromosome is easy and rapid and greatly expands the radiation dose range over which the PCC technique can be used. Second, it allows the easy recognition of exchange type aberrations. A number of new applications of this technology, such as predicting the radiosensitivity of human tumours in situ, are feasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J., Chang, J., Giaccia, A. et al. The use of fluorescence in situ hybridisation combined with premature chromosome condensation for the identification of chromosome damage. Br J Cancer 63, 517–521 (1991). https://doi.org/10.1038/bjc.1991.123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1991.123

This article is cited by

Search

Quick links