Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of KCNJ1 variation with change in fasting glucose and new onset diabetes during HCTZ treatment

Abstract

Thiazide-induced potassium loss may contribute to new onset diabetes (NOD). KCNJ1 encodes a potassium channel and one study observed that a KCNJ1 single-nucleotide polymorphism (SNP) was associated with changes in fasting glucose (FG) during hydrochlorothiazide (HCTZ) treatment. We used linear regression to test association of KCNJ1 SNPs and haplotypes with FG changes during HCTZ treatment in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. We used logistic regression to test association of KCNJ1 variation with NOD in HCTZ-treated patients from the International Verapamil SR Trandolapril Study (INVEST). Multivariate regression analyses were performed by race/ethnicity with false discovery rate (FDR) correction. In PEAR blacks, a KCNJ1 SNP was associated with increased FG during HCTZ treatment (beta=8.47, PFDR=0.009). KCNJ1 SNPs and haplotypes were associated with NOD risk in all INVEST race/ethnic groups (strongest association: odds ratio 2.14 (1.31–3.53), PFDR=0.03). Our findings support that KCNJ1 variation is associated with HCTZ-induced dysglycemia and NOD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB et al. Executive summary: Heart Disease and Stroke Statistics—2012 Update: a report from the American Heart Association. Circulation 2012; 125: 188–197.

    Article  PubMed  Google Scholar 

  2. Verdecchia P, Reboldi G, Angeli F, Borgioni C, Gattobigio R, Filippucci L et al. Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension 2004; 43: 963–969.

    Article  CAS  PubMed  Google Scholar 

  3. Alderman MH, Cohen H, Madhavan S . Diabetes and cardiovascular events in hypertensive patients. Hypertension 1999; 33: 1130–1134.

    Article  CAS  PubMed  Google Scholar 

  4. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003; 289: 2560–2572.

    CAS  PubMed  Google Scholar 

  5. Carter BL, Einhorn PT, Brands M, He J, Cutler JA, Whelton PK et al. Thiazide-induced dysglycemia: call for research from a working group from the national heart, lung, and blood institute. Hypertension 2008; 52: 30–36.

    Article  CAS  PubMed  Google Scholar 

  6. Elliott WJ, Meyer PM . Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 2007; 369: 201–207.

    Article  CAS  PubMed  Google Scholar 

  7. Meigs JB, Cupples LA, Wilson PW . Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 2000; 49: 2201–2207.

    Article  CAS  PubMed  Google Scholar 

  8. Bozkurt O, de Boer A, Grobbee DE, de Leeuw PW, Kroon AA, Schiffers P et al. Variation in Renin-Angiotensin system and salt-sensitivity genes and the risk of diabetes mellitus associated with the use of thiazide diuretics. Am J Hypertens 2009; 22: 545–551.

    Article  CAS  PubMed  Google Scholar 

  9. Maitland-van der Zee AH, Turner ST, Schwartz GL, Chapman AB, Klungel OH, Boerwinkle E . Demographic, environmental, and genetic predictors of metabolic side effects of hydrochlorothiazide treatment in hypertensive subjects. Am J Hypertens 2005; 18: 1077–1083.

    Article  CAS  PubMed  Google Scholar 

  10. Irvin MR, Lynch AI, Kabagambe EK, Tiwari HK, Barzilay JI, Eckfeldt JH et al. Pharmacogenetic association of hypertension candidate genes with fasting glucose in the GenHAT Study. J Hypertens 2010; 28: 2076–2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zillich AJ, Garg J, Basu S, Bakris GL, Carter BL . Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension 2006; 48: 219–224.

    Article  CAS  PubMed  Google Scholar 

  12. Shafi T, Appel LJ, Miller ER, Klag MJ, Parekh RS . Changes in serum potassium mediate thiazide-induced diabetes. Hypertension 2008; 52: 1022–1029.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson JA, Boerwinkle E, Zineh I, Chapman AB, Bailey K, Cooper-DeHoff RM et al. Pharmacogenomics of antihypertensive drugs: rationale and design of the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. Am Heart J 2009; 157: 442–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pepine CJ, Handberg-Thurmond E, Marks RG, Conlon M, Cooper-DeHoff R, Volkers P et al. Rationale and design of the International Verapamil SR/Trandolapril Study (INVEST): an Internet-based randomized trial in coronary artery disease patients with hypertension. J Am Coll Cardiol 1998; 32: 1228–1237.

    Article  CAS  PubMed  Google Scholar 

  15. Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH et al. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA 2003; 290: 2805–2816.

    Article  CAS  PubMed  Google Scholar 

  16. Cooper-Dehoff R, Cohen JD, Bakris GL, Messerli FH, Erdine S, Hewkin AC et al. Predictors of development of diabetes mellitus in patients with coronary artery disease taking antihypertensive medications (findings from the INternational VErapamil SR-Trandolapril STudy [INVEST]). Am J Cardiol 2006; 98: 890–894.

    Article  CAS  PubMed  Google Scholar 

  17. Cooper-DeHoff RM, Handberg EM, Mancia G, Zhou Q, Champion A, Legler UF et al. INVEST revisited: review of findings from the International Verapamil SR-Trandolapril Study. Expert Rev Cardiovasc Ther 2009; 7: 1329–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keating BJ, Tischfield S, Murray SS, Bhangale T, Price TS, Glessner JT et al. Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies. PLoS One 2008; 3: e3583.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cooper-DeHoff RM, Aranda JM, Gaxiola E, Cangiano JL, Garcia-Barreto D, Conti CR et al. Blood pressure control and cardiovascular outcomes in high-risk Hispanic patients—findings from the International Verapamil SR/Trandolapril Study (INVEST). Am Heart J 2006; 151: 1072–1079.

    Article  PubMed  Google Scholar 

  21. Conway J, Lauwers P . Hemodynamic and hypotensive effects of long-term therapy with chlorothiazide. Circulation 1960; 21: 21–27.

    Article  CAS  PubMed  Google Scholar 

  22. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  23. Welling PA, Ho K . A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 2009; 297: F849–F863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C et al. Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 2008; 57: 1618–1628.

    Article  CAS  PubMed  Google Scholar 

  25. Chatterjee R, Yeh HC, Shafi T, Selvin E, Anderson C, Pankow JS et al. Serum and dietary potassium and risk of incident type 2 diabetes mellitus: The Atherosclerosis Risk in Communities (ARIC) study. Arch Intern Med 2010; 170: 1745–1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith SM, Anderson SD, Wen S, Gong Y, Turner ST, Cooper-Dehoff RM et al. Lack of correlation between thiazide-induced hyperglycemia and hypokalemia: subgroup analysis of results from the pharmacogenomic evaluation of antihypertensive responses (PEAR) study. Pharmacotherapy 2009; 29: 1157–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldman N, Lin IF, Weinstein M, Lin YH . Evaluating the quality of self-reports of hypertension and diabetes. J Clin Epidemiol 2003; 56: 148–154.

    Article  PubMed  Google Scholar 

  28. Aguilar D, Solomon SD, Kober L, Rouleau JL, Skali H, McMurray JJ et al. Newly diagnosed and previously known diabetes mellitus and 1-year outcomes of acute myocardial infarction: the VALsartan In Acute myocardial iNfarcTion (VALIANT) trial. Circulation 2004; 110: 1572–1578.

    Article  PubMed  Google Scholar 

  29. Bosch J, Lonn E, Pogue J, Arnold JM, Dagenais GR, Yusuf S . Long-term effects of ramipril on cardiovascular events and on diabetes: results of the HOPE study extension. Circulation 2005; 112: 1339–1346.

    Article  PubMed  Google Scholar 

  30. Yusuf S, Gerstein H, Hoogwerf B, Pogue J, Bosch J, Wolffenbuttel BH et al. Ramipril and the development of diabetes. JAMA 2001; 286: 1882–1885.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the National Institutes of Health (Bethesda, MD, USA), grant U01 GM074492, funded as part of the Pharmacogenetics Research Network. Additional support for this work includes: National Institutes of Health grants R01 HL74730, K23 grants HL091120 (AL Beitelshees) and HL086558 (RM Cooper-DeHoff); NIH CTSA grants UL1-RR092890 (University of Florida), UL1-RR025008 (Emory University) and UL1-RR024150 (Mayo Clinic); and grants from Abbott Laboratories, the University of Florida Opportunity Fund.and the Mayo Foundation. The project described was supported by Award Number TL1RR029888 from the National Center for Research Resources (JH Karnes). We thank Brian Gawronski, Ben Burkley, Lynda Stauffer and Cheryl Galloway for processing and genotyping samples, the PEAR study physicians Drs George Baramidze, Carmen Bray, Kendall Campbell, R Whit Curry, Frederic Rabari-Oskoui, Dan Rubin and Seigfried Schmidt, and the patients who participated in PEAR and INVEST-GENES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Cooper-DeHoff.

Ethics declarations

Competing interests

Drs Johnson, Pepine, Cooper-DeHoff and Langaee have received funding from Abbott Laboratories. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnes, J., McDonough, C., Gong, Y. et al. Association of KCNJ1 variation with change in fasting glucose and new onset diabetes during HCTZ treatment. Pharmacogenomics J 13, 430–436 (2013). https://doi.org/10.1038/tpj.2012.34

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.34

Keywords

This article is cited by

Search

Quick links