Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neuregulin and laminin stimulate phosphorylation of the NF2 tumor suppressor in Schwann cells by distinct protein kinase A and p21-activated kinase-dependent pathways

Abstract

Mutations in the neurofibromatosis type 2 (NF2) gene cause formation of schwannomas and other tumors in the nervous system. The NF2 protein, Schwannomin/Merlin, is a cytoskeleton-associated tumor suppressor regulated by phosphorylation at serine 518 (S518). Unphosphorylated Schwannomin restricts cell proliferation in part by inhibiting Rac- and p21-activated kinase (Pak). In a negative-feedback loop, Pak phosphorylates Schwannomin inactivating its ability to inhibit Pak. Little is known about receptor mechanisms that promote Pak activity and Schwannomin phosphorylation. Here we demonstrate in primary Schwann cells (SCs) that Schwannomin is rapidly phosphorylated on S518 by Pak following laminin-1 binding to β1 integrin, and by protein kinase A following neuregulin-1β (NRG1β) binding to ErbB2/ErbB3 receptors. These receptors, together with phosphorylated Schwannomin, P-Pak, Cdc42 and paxillin are enriched at the distal tips of SC processes, and can be isolated as a complex using β1 integrin antibody. Dual stimulation with laminin-1 and NRG1β does not synergistically increase Schwannomin phosphorylation because ErbB2 kinase partially antagonizes integrin-dependent activation of Pak. These results identify two parallel, but interactive pathways that inactivate the tumor suppressor activity of Schwannomin to allow proliferation of subconfluent SCs. Moreover, they identify ErbB2, ErbB3 and β1 integrins as potential therapeutic targets for NF2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adam L, Vadlamudi R, Kondapaka SB, Chernoff J, Mendelsohn J, Kumar R . (1998). Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. J Biol Chem 273: 2823.

    Article  Google Scholar 

  • Alfthan K, Heiska L, Gronholm M, Renkema GH, Carpen O . (2004). Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes Merlin-Ezrin heterodimerization. J Biol Chem 279: 18559–18566.

    Article  CAS  Google Scholar 

  • Brown MC, West KA, Turner CE . (2002). Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol Biol Cell 13: 1550–1565.

    Article  CAS  Google Scholar 

  • Chen LM, Bailey D, Fernandez-Valle C . (2000). Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J Neurosci 20: 3776–3784.

    Article  CAS  Google Scholar 

  • Chen ZL, Strickland S . (2003). Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 163: 889–899.

    Article  CAS  Google Scholar 

  • Chernousov MA, Carey DJ . (2000). Schwann cell extracellular matrix molecules and their receptors. Histol Histopathol 15: 593–601.

    CAS  PubMed  Google Scholar 

  • Coles LC, Shaw PE . (2002). PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene 21: 2236–2244.

    Article  CAS  Google Scholar 

  • Del Pozo MA, Price LS, Alderson NB, Ren X-D, Schwartz MA . (2000). Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J 19: 2008–2014.

    Article  CAS  Google Scholar 

  • Dubovy P, Svizenska I, Jancalek R, Klusakova I, Houstava L, Haninec P et al. (1999). Immunohistochemical localization of laminin-1 in the acellular nerve grafts is associated with migrating Schwann cells which display corresponding integrin receptors. Gen Physiol Biophys 18: 63–65.

    CAS  PubMed  Google Scholar 

  • Fernandez-Valle C, Gwynn L, Wood PM, Carbonetto S, Bunge MB . (1994). Anti-beta 1 integrin antibody inhibits Schwann cell myelination. J Neurobiol 25: 1207–1226.

    Article  CAS  Google Scholar 

  • Fernandez-Valle C, Tang Y, Ricard J, Rodenas-Ruano A, Taylor A, Hackler E et al. (2002). Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31: 354–362.

    Article  CAS  Google Scholar 

  • Garratt AN, Britsch S, Birchmeier C . (2000). Neuregulin, a factor with many functions in the life of a Schwann cell. Bioessays 22: 987–996.

    Article  CAS  Google Scholar 

  • Hansen MR, Linthicum FH . (2004). Expression of neuregulin and activation of erbB receptors in vestibular schwannomas: possible autocrine loop stimulation. Otol Neurotol 25: 155–159.

    Article  Google Scholar 

  • Howe AK, Juliano RL . (2000). Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nat Cell Biol 2: 593–600.

    Article  CAS  Google Scholar 

  • Iacovelli J, Lopera J, Bott M, Baldwin E, Khaled A, Uddin N et al. (2007). Serum and forskolin cooperate to promote G1 progression in Schwann cells by differentially regulating cyclin D1, E1, and p27(Kip) expression. Glia 55: 1638–1647.

    Article  Google Scholar 

  • James MF, Manchanda N, Gonzalez-Agosti C, Hartwig JH, Ramesh V . (2001). The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through lateral association. Biochem J 356: 377–386.

    Article  CAS  Google Scholar 

  • Kaempchen K, Mielke K, Utermark T, Langmesser S, Hanemann CO . (2003). Upregulation of the Rac1/JNK signaling pathway in primary human schwannoma cells. Hum Mol Genet 12: 1211–1221.

    Article  CAS  Google Scholar 

  • Kim HA, DeClue JE, Ratner N . (1997). cAMP-dependent protein kinase A is required for Schwann cell growth: interactions between the cAMP and neuregulin/tyrosine kinase pathways. J Neurosci Res 49: 236–247.

    Article  CAS  Google Scholar 

  • Kissil JL, Johnson KC, Eckman MS, Jacks T . (2002). Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 277: 10394–10399.

    Article  CAS  Google Scholar 

  • Lee JW, Juliano RL . (2004). Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Mol Cells 30: 188–202.

    Google Scholar 

  • Lotti LV, Di Lazzaro C, Zompetta C, Frati L, Torrisi MR . (1992). Surface distribution and internalization of erbB-2 proteins. Exp Cell Res 202: 274–280.

    Article  CAS  Google Scholar 

  • Maitra S, Kulikaukas RM, Gavilan H, Fehon RG . (2006). The tumor suppressors Merlin and expanded function cooperatively to modulate receptor endocytosis and signaling. Curr Biol 16: 702–709.

    Article  CAS  Google Scholar 

  • McClatchey AI, Giovannini M . (2005). Membrane organization and tumorigenesis—the NF2 tumor suppressor, merlin. Genes Dev 19: 2265–2277.

    Article  CAS  Google Scholar 

  • Milner R, Wilby M, Nishimura S, Boylen K, Edwards G, Fawcett J et al. (1997). Division of labor of Schwann cell integrins during migration on peripheral nerve extracellular matrix ligands. Dev Biol 185: 215–228.

    Article  CAS  Google Scholar 

  • Monje PV, Bunge M, Wood PM . (2006). Cyclic AMP synergistically enhances neuregulin-dependent ERK and Akt activation and cell cycle progression in Schwann cells. Glia 3: 649–659.

    Article  Google Scholar 

  • Okada T, You L, Giancotti FG . (2007). Shedding light on Merlin's wizardry. Trends Cell Biol 17: 222–229.

    Article  CAS  Google Scholar 

  • Osherov N, Gazit A, Gilon C, Levitzki A . (1993). Selective inhibition of the epidermal growth factor and HER2/neu receptors by tryphostins. J Biol Chem 268: 11134–11142.

    CAS  PubMed  Google Scholar 

  • Rong R, Surace EI, Haipek CA, Gutmann DH, Ye K . (2004). Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression. Oncogene 23: 8447–8454.

    Article  CAS  Google Scholar 

  • Rosenbaum C, Karyala S, Marchionni MA, Kim HA, Krasnoselsky AL, Happel B et al. (1997). Schwann cells express NDF and SMDF/n-ARIA mRNAs, secrete neuregulin, and show constitutive activation of erbB3 receptors: evidence for a neuregulin autocrine loop. Exp Neurol 148: 604–615.

    Article  CAS  Google Scholar 

  • Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C et al. (1993). Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363: 515–521.

    Article  CAS  Google Scholar 

  • Scoles DR, Qin Y, Nguyen V, Gutmann DH, Pulst SM . (2005). HRS inhibits EGF receptor signaling in the RT4 rat schwannoma cell line. Biochem Biophys Res Commun 335: 385–392.

    Article  CAS  Google Scholar 

  • Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I et al. (2001). The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 1: 63–72.

    Article  CAS  Google Scholar 

  • Taylor AR, Geden SE, Fernandez-Valle C . (2003). Formation of a beta 1 integrin signaling complex in Schwann cells is independent of rho. Glia 41: 94–104.

    Article  Google Scholar 

  • Thaxton C, Lopera J, Bott M, Baldwin ME, Kalidas P, Fernandez-Valle C . (2007). Phosphorylation of the NF2 tumor suppressor in Schwann cells is mediated by Cdc42-Pak and requires paxillin binding. Mol Cell Neurosci 34: 231–242.

    Article  CAS  Google Scholar 

  • Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM et al. (1993). A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72: 791–800.

    Article  CAS  Google Scholar 

  • Turner CE . (2000). Paxillin interactions. J Cell Sci 113: 4139–4140.

    CAS  PubMed  Google Scholar 

  • Utermark T, Kaempchen K, Hanemann CO . (2003). Pathological adhesion of primary human schwannoma cells is dependent on altered expression of integrins. Brain Pathol 13: 352–363.

    Article  Google Scholar 

  • Xiao GH, Beeser A, Chernoff J, Testa JR . (2002). p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 277: 883–886.

    Article  CAS  Google Scholar 

  • Yang D, Beirman J, Tarumi YS, Zhong YP, Rangwala R, Proctor TM et al. (2005). Coordinate control of axon defasiculation and myelination by laminin-2 and laminin-8. J Cell Biol 168: 655–666.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Marchionni and G Bokoch for graciously providing NRG1β and Pak constructs, respectively. This work was supported by a grant from DOD (award DAMD17-03-1-0211) to CFV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Fernandez-Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaxton, C., Lopera, J., Bott, M. et al. Neuregulin and laminin stimulate phosphorylation of the NF2 tumor suppressor in Schwann cells by distinct protein kinase A and p21-activated kinase-dependent pathways. Oncogene 27, 2705–2715 (2008). https://doi.org/10.1038/sj.onc.1210923

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210923

Keywords

This article is cited by

Search

Quick links