Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Wild-type p53 and p73 negatively regulate expression of proliferation related genes

Abstract

When normal cells come under stress, the wild-type (WT) p53 level increases resulting in the regulation of gene expression responsible for growth arrest or apoptosis. Here we show that elevated levels of WT p53 or its homologue, p73, inhibit expression of a number of cell cycle regulatory and growth promoting genes. Our analysis also identified a group of genes whose expression is differentially regulated by WT p53 and p73. We have infected p53-null H1299 human lung carcinoma cells with recombinant adenoviruses expressing WT p53, p73 or β-galactosidase, and have undertaken microarray hybridization analyses to identify genes whose expression profile is altered by p53 or p73. Quantitative real-time PCR verified the repression of E2F-5, centromere protein A and E, minichromosome maintenance proteins (MCM)-2, -3, -5, -6 and -7 and human CDC25B after p53 expression. 5-Fluorouracil treatment of colon carcinoma HCT116 cells expressing WT p53 results in a reduction of the cyclin B2 protein level suggesting that DNA damage may indeed cause repression of these genes. Transient transcriptional assays verified that WT p53 repressed promoters of a number of these genes. Interestingly, a gain-of-function p53 mutant instead upregulated a number of these promoters in transient transfection. Using promoter deletion mutants of MCM-7 we have found that WT p53-mediated repression needs a minimal promoter that contains a single E2F site and surrounding sequences. However, a single E2F site cannot be significantly repressed by WT p53. Many of the genes identified are also repressed by p21. Thus, our work shows that WT p53 and p73 repress a number of growth-related genes and that in many instances this repression may be through the induction of p21.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aldaz CM, Daniel R, Gaddis S, Kittrell F, Medina D . (2002. Serial analysis of gene expression in normal p53 null mammary epithelium. Oncogene 21: 6366–6376.

    Article  CAS  PubMed  Google Scholar 

  • Altschmied J, Duschl J . (1997). Set of optimized luciferase reporter gene plasmids compatible with widely used CAT vectors. Biotechniques 23: 436–438.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J . (2001). Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 13: 738–747.

    Article  CAS  PubMed  Google Scholar 

  • Basile V, Mantovani R, Imbriano C . (2006). DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters, via p53 C-terminal lysines. J Biol Chem 281: 2347–2357.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y . (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289–300.

    Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Chae HD, Yun J, Shi DY . (2005). Transcription repression of a CCAAT-binding transcription factor CBF/HSP70 by p53. Exp Mol Med 37: 488–491.

    Article  CAS  PubMed  Google Scholar 

  • Chao C, Saito S, Kang J, Anderson CW, Appella E, Xu Y . (2000). p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J 19: 4967–4975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb D, Lanyi A, Scian M, Keiger J, Brown DR, Le Roith D et al. (2001). Differential modulation of cellular and viral promoters by p73 and p53. Int J Oncol 18: 401–409.

    CAS  PubMed  Google Scholar 

  • Deb D, Scian M, Roth KE, Li W, Keiger J, Chakraborti AS et al. (2002). Hetero-oligomerization does not compromise ‘gain of function’ of tumor-derived p53 mutants. Oncogene 21: 176–189.

    Article  CAS  PubMed  Google Scholar 

  • Deb S, Jackson CT, Subler MA, Martin DW . (1992). Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells. J Virol 66: 6164–6170.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4: P3.

    Article  PubMed  Google Scholar 

  • Di Como CJ, Gaiddon C, Prives C . (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19: 1438–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el-Deiry WS . (1998). Regulation of p53 downstream genes. Semin Cancer Biol 8: 345–357.

    Article  CAS  PubMed  Google Scholar 

  • Flatt PM, Tang LJ, Scatena CD, Szak ST, Pietenpol JA . (2000). p53 regulation of G(2) checkpoint is retinoblastoma protein dependent. Mol Cell Biol 20: 4210–4223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.

    Article  CAS  PubMed  Google Scholar 

  • Fontemaggi G, Amariglio N, Rechavi G, Krishnamurthy J, Strano S, Sacchi A et al. (2002). Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J Biol Chem 277: 43359–43368.

    Article  CAS  PubMed  Google Scholar 

  • Ho J, Benchimol S . (2003). Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10: 404–408.

    Article  CAS  PubMed  Google Scholar 

  • Ho JS, Ma W, Mao DY, Benchimol S . (2005). p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25: 7423–7431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M . (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277: 3247–3257.

    Article  CAS  PubMed  Google Scholar 

  • Ichimiya S, Kageyama H, Takada N, Sunahara M, Shishikura T, Nakamura Y et al. (2001). Genetic analysis of p73 localized at chromosome 1p36.3 in primary neuroblastomas. Med Pediatr Oncol 36: 42–44.

    Article  CAS  PubMed  Google Scholar 

  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M et al. (2005). Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25: 3737–3751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2: 249–264.

    Article  Google Scholar 

  • Johnsen JI, Aurelio ON, Kwaja Z, Jorgensen GE, Pellegata NS, Plattner R et al. (2000). p53-mediated negative regulation of stathmin/Op18 expression is associated with G(2)/M cell-cycle arrest. Int J Cancer 88: 685–691.

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Hammond EM, Giaccia A, Attardi LD . (2005). The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nat Genet 37: 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Kannan K, Rechavi G, Jakob-Hirsch J, Kela I, Kaminski N, Getz G et al. (2001). DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene 20: 2225–2234.

    Article  CAS  PubMed  Google Scholar 

  • Kho PS, Wang Z, Zhuang L, Li Y, Chew J-L, Ng H-H et al. (2004). p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J Biol Chem 279: 21183–21192.

    Article  CAS  PubMed  Google Scholar 

  • Korner K, Jerome V, Schmidt T, Muller R . (2001). Cell cycle regulation of the murine cdc25B promoter: essential role for nuclear factor-Y and a proximal repressor element. J Biol Chem 276: 9662–9669.

    Article  CAS  PubMed  Google Scholar 

  • Koumenis C, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J et al. (2001). Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21: 1297–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalev S, Marchenko N, Swendeman S, LaQuaglia M, Moll UM . (1998). Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth Differ 9: 897–903.

    CAS  PubMed  Google Scholar 

  • Krause K, Wasner M, Reinhard W, Haugwitz U, Dohna CL, Mossner J et al. (2000). The tumour suppressor protein p53 can repress transcription of cyclin B. Nucleic Acids Res 28: 4410–4418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubicka S, Kuhnel F, Zender L, Rudolph KL, Plumpe J, Manns M et al. (1999). The tumour suppressor protein p53 can repress transcription of cyclin B. J Biol Chem 274: 32137–32144.

    Article  CAS  PubMed  Google Scholar 

  • Lee KC, Crowe AJ, Barton MC . (1999). p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Mol Cell Biol 19: 1279–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohr K, Moritz C, Contente A, Dobbelstein M . (2003). p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278: 32507–32516.

    Article  PubMed  Google Scholar 

  • Maeda Y, Hwang-Verslues WW, Wei G, Fukazawa T, Durbin ML, Owen LB et al. (2006). Tumour suppressor p53 down-regulates the expression of the human hepatocyte nuclear factor 4alpha (HNF4alpha) gene. Biochem J 400: 303–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manni I, Mazzaro G, Gurtner A, Mantovani R, Haugwitz U, Krause K et al. (2001). NF-Y mediates the transcriptional inhibition of the cyclin B1, cyclin B2, and cdc25C promoters upon induced G2 arrest. J Biol Chem 276: 5570–5576.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell SA, Davis GE . (2000). Differential gene expression in p53-mediated apoptosis-resistant vs apoptosis-sensitive tumor cell lines. Proc Natl Acad Sci USA 97: 13009–13014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melino G, De Laurenzi V, Vousden KH . (2002). p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2: 605–615.

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, Petrenko O . (2003). The MDM2-p53 interaction. Mol Cancer Res 1: 1001–1008.

    CAS  PubMed  Google Scholar 

  • Moskovits N, Kalinkovitch A, Bar J, Lapidot T, Oren M . (2006). p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res 66: 10671–10676.

    Article  CAS  PubMed  Google Scholar 

  • Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ et al. (1999). Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 13: 2490–2501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy M, Hinman A, Levine AJ . (1996). Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev 10: 2971–2980.

    Article  CAS  PubMed  Google Scholar 

  • Prabhu NS, Blagosklonny MV, Zeng YX, Wu GS, Waldman T, El-Deiry WS . (1996). Suppression of cancer cell growth by adenovirus expressing p21(WAF1/CIP1) deficient in PCNA interaction. Clin Cancer Res 2: 1221–1229.

    CAS  PubMed  Google Scholar 

  • Prives C, Hall PA . (1999). The p53 pathway. J Pathol 187: 112–126.

    Article  CAS  PubMed  Google Scholar 

  • Scian MJ, Stagliano KE, Anderson MA, Hassan S, Bowman M, Miles MF et al. (2005). Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 25: 10097–10110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scian MJ, Stagliano KE, Deb D, Ellis MA, Carchman EH, Das A et al. (2004a). Tumor-derived p53 mutants induce oncogenesis by transactivating growth-promoting genes. Oncogene 23: 4430–4443.

    Article  CAS  PubMed  Google Scholar 

  • Scian MJ, Stagliano KE, Ellis MA, Hassan S, Bowman M, Miles MF et al. (2004b). Modulation of gene expression by tumor-derived p53 mutants. Cancer Res 64: 7447–7454.

    Article  CAS  PubMed  Google Scholar 

  • Scoumanne A, Chen X . (2006). The epithelial cell transforming sequence 2, a guanine nucleotide exchange factor for Rho GTPases, is repressed by p53 via protein methyltransferases and is required for G1-S transition. Cancer Res 66: 6271–6279.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Koshiji M, Pedeux R, Rusin M, Spillare EA, Shen JC et al. (2005). Tumor suppressor p53 represses transcription of RECQ4 helicase. Oncogene 24: 1738–1748.

    Article  CAS  PubMed  Google Scholar 

  • Senoo M, Matsumara Y, Habu S . (2001). Identification of a novel retrovirus long terminal repeat (LTR) that is targeted by p51A (TAp63gamma) and selective dominant-negative activity of p73L (DeltaNp63alpha) toward p53-responsive promoter activities. Biochem Biophys Res Commun 286: 628–634.

    Article  CAS  PubMed  Google Scholar 

  • Shats I, Milyavsky M, Tang X, Stambolsky P, Erez N, Brosh R et al. (2004). p53-dependent down-regulation of telomerase is mediated by p21waf1. J Biol Chem 279: 50976–50985.

    Article  CAS  PubMed  Google Scholar 

  • Spurgers KB, Coombes KR, Bohnenstiehl NL, Mullins B, Meyn RE, Logothetis CJ et al. (2006). Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem 281: 25134–25142.

    Article  CAS  PubMed  Google Scholar 

  • Stagliano KE, Carchman E, Deb S . (2003). Real-time polymerase chain reaction quantitation of relative expression of genes modulated by p53 using SYBR Green I. Methods Mol Biol 234: 73–91.

    CAS  PubMed  Google Scholar 

  • Stanelle J, Stiewe T, Rodicker F, Kohler K, Theseling C, Putzer BM . (2003). Mechanism of E2F1-induced apoptosis in primary vascular smooth muscle cells. Cardiovasc Res 59: 512–519.

    Article  CAS  PubMed  Google Scholar 

  • Subler MA, Martin DW, Deb S . (1992). Inhibition of viral and cellular promoters by human wild-type p53. J Virol 66: 4757–4762.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Martel-Pelletier J, Pelletier JP, Wenger L, Altman RD, Howell DS et al. (2000). Wild-type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J Biol Chem 275: 11327–11332.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Hiraiwa A, Ohashi M, Ishibashi M, Kiyono T . (1998). Cloning and characterization of human MCM7 promoter. Gene 216: 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Tannapfel A, Weinans L, Geissler F, Schutz A, Katalinic A, Kockerling F et al. (2000). Mutations of p53 tumor suppressor gene, apoptosis, and proliferation in intrahepatic cholangiocellular carcinoma of the liver. Dig Dis Sci 45: 317–324.

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Schonthal AH, Galante J, Stark GR . (2001). p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J Biol Chem 276: 1998–2006.

    Article  CAS  PubMed  Google Scholar 

  • Thibault C, Wang L, Zhang L, Miles MF . (2001). DNA arrays and functional genomics in neurobiology. Int Rev Neurobiol 48: 219–253.

    Article  CAS  PubMed  Google Scholar 

  • Urist M, Prives C . (2002). p53 leans on its siblings. Cancer Cell 1: 311–313.

    Article  CAS  PubMed  Google Scholar 

  • Valerie E, Frischer J, Scriven R, Klotz DH, Ramenofsky ML . (1999). Diagnosis and treatment of urethral prolapse in children. Urology 54: 1082–1084.

    Article  CAS  PubMed  Google Scholar 

  • Van Bodegom D, Dipp S, Puri S, Magenheimer BS, Calvet JP, El-Dahr SS . (2006). The polycystic kidney disease-1 gene is a target for p53-mediated transcriptional repression. J Biol Chem 281: 31234–31244.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Woo RA, Jack MT, Xu Y, Burma S, Chen DJ, Lee PW . (2002). DNA damage-induced apoptosis requires the DNA-dependent protein kinase, and is mediated by the latent population of p53. EMBO J 21: 3000–3008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CR, Planchon SM, Wuerzberger-Davis SM, Davis TW, Cuthill S, Miyamoto S et al. (2000). Coordinate modulation of Sp1, NF-kappa B, and p53 in confluent human malignant melanoma cells after ionizing radiation. FASEB J 14: 379–390.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yu D, Hu M, Xiong S, Lang A, Ellis LM et al. (2000). Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res 60: 3655–3661.

    CAS  PubMed  Google Scholar 

  • Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH et al. (2000). The transcriptional program following p53 activation. Cold Spring Harb Symp Quant Biol 65: 475–482.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Arnold Levine, Bert Vogelstein and Vimla Band for providing us with cells and plasmids. This work was supported by grants from Philip Morris USA Inc and by Philip Morris International (04-I176-01) and NIH (CA70712) to Sumitra Deb and from NIH (CA74172) to Swati Palit Deb. Katherine Stagliano was supported by Susan G Komen Breast Cancer Foundation (DISS0201749) and Mariano Scian by a predoctoral fellowship from NCI (F31-CA97520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Deb.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scian, M., Carchman, E., Mohanraj, L. et al. Wild-type p53 and p73 negatively regulate expression of proliferation related genes. Oncogene 27, 2583–2593 (2008). https://doi.org/10.1038/sj.onc.1210898

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210898

Keywords

This article is cited by

Search

Quick links