Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The Werner syndrome protein is required for recruitment of chromatin assembly factor 1 following DNA damage

Abstract

The Werner syndrome protein (WRN) and chromatin assembly factor 1 (CAF-1) are both involved in the maintenance of genome stability. In response to DNA-damaging signals, both of these proteins relocate to sites where DNA synthesis occurs. However, the interaction between WRN and CAF-1 has not yet been investigated. In this report, we show that WRN interacts physically with the largest subunit of CAF-1, hp150, in vitro and in vivo. Although hp150 does not alter WRN catalytic activities in vitro, and the chromatin assembly activity of CAF-1 is not affected in the absence of WRN in vivo, this interaction may have an important role during the cellular response to DNA replication fork blockage and/or DNA damage signals. In hp150 RNA-mediated interference (RNAi) knockdown cells, WRN partially formed foci following hydroxyurea (HU) treatment. However, in the absence of WRN, hp150 did not relocate to form foci following exposure to HU and ultraviolet light. Thus, our results demonstrate that WRN responds to DNA damage before CAF-1 and suggest that WRN may recruit CAF-1, via interaction with hp150, to DNA damage sites during DNA synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adkins MW, Howar SR, Tyler JK . (2004). Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 14: 657–666.

    Article  CAS  Google Scholar 

  • Bohr VA . (2005). Deficient DNA repair in the human progeroid disorder, Werner syndrome. Mut Res 577: 252–259.

    Article  CAS  Google Scholar 

  • Bradshaw PS, Stavropoulos DJ, Meyn MS . (2005). Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Genet 37: 193–197.

    Article  CAS  Google Scholar 

  • Cheng WH, Von Kobbe C, Opresko PL, Arthur LM, Komatsu K, Seidman MM et al. (2004). Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279: 21169–21176.

    Article  CAS  Google Scholar 

  • Doherty KM, Sommers JA, Gray MD, Lee JW, von Kobbe C, Thoma NH et al. (2005). Physical and functional mapping of the replication protein A interaction domain of the werner and bloom syndrome helicases. J Biol Chem 280: 29494–29505.

    Article  CAS  Google Scholar 

  • Franchitto A, Pichierri P . (2004). Werner syndrome protein and the MRE11 complex are involved in a common pathway of replication fork recovery. Cell Cycle 3: 1185–1193.

    Article  Google Scholar 

  • Gaillard P-H, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G . (1996). Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86: 887–896.

    Article  CAS  Google Scholar 

  • Garcia PL, Bradley G, Hayes CJ, Krintel S, Soultanas P, Janscak P . (2004). RPA alleviates the inhibitory effect of vinylphosphonate internucleotide linkages on DNA unwinding by BLM and WRN helicases. Nucleic Acids Res 32: 3771–3778.

    Article  CAS  Google Scholar 

  • Green CM, Almouzni G . (2003). Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo. EMBO J 22: 5163–5174.

    Article  CAS  Google Scholar 

  • Guay D, Gaudreault I, Massip L, Lebel M . (2006). Formation of a nuclear complex containing the p53 tumor suppressor, YB-1, and the Werner syndrome gene product in cells treated with UV light. Int J Biochem Cell Biol 38: 1300–1313.

    Article  CAS  Google Scholar 

  • Harrigan JA, Opresko PL, von Kobbe C, Kedar PS, Prasad R, Wilson SH et al. (2003). The Werner syndrome protein stimulates DNA polymerase beta strand displacement synthesis via its helicase activity. J Biol Chem 278: 22686–22695.

    Article  CAS  Google Scholar 

  • Harrigan JA, Wilson III DM, Prasad R, Opresko PL, Beck G, May A et al. (2006). The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. Nucleic Acid Res 34: 745–754.

    Article  CAS  Google Scholar 

  • Hickson ID . (2003). RecQ helicases: caretakers of the genome. Nat Rev Cancer 3: 169–178.

    Article  CAS  Google Scholar 

  • Hoek M, Stillman B . (2003). Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci USA 100: 12183–12188.

    Article  CAS  Google Scholar 

  • Jiao R, Bachrati CZ, Pedrazzi G, Kuster P, Petkovic M, Li J-L et al. (2004). Physical and functional interaction between the Bloom's syndrome gene product and the largest subunit of chromatin assembly factor 1. Mol Cell Biol 24: 4710–4719.

    Article  CAS  Google Scholar 

  • Karmakar P, Bohr VA . (2005). Cellular dynamics and modulation of WRN protein is DNA damage specific. Mech Ageing Dev 126: 1146–1158.

    Article  CAS  Google Scholar 

  • Karmakar P, Piotrowski J, Brosh Jr RM, Sommers JA, Miller SP, Cheng WH et al. (2002a). Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 277: 18291–18302.

    Article  CAS  Google Scholar 

  • Karmakar P, Snowden CM, Ramsden DA, Bohr VA . (2002b). Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res 30: 3583–3591.

    Article  CAS  Google Scholar 

  • Kaufman PD, Kobayashi R, Stillman B . (1997). Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11: 345–357.

    Article  CAS  Google Scholar 

  • Kaufman PD, Kobayashi R, Kessler N, Stillman B . (1995). The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81: 1105–1114.

    Article  CAS  Google Scholar 

  • Krude T . (1995). Chromatin assembly factor 1 (CAF-1) colocalizes with replication foci in HeLa cell nuclei. Exp Cell Res 220: 304–311.

    Article  CAS  Google Scholar 

  • Krude T . (1999). Chromatin assembly during DNA replication in somatic cells. Eur J Biochem 263: 1–5.

    Article  CAS  Google Scholar 

  • Lai JS, Herr W . (1992). Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc Natl Acad Sci USA 89: 6692–6958.

    Article  Google Scholar 

  • Laud PR, Multani AS, Bailey SM, Wu L, Ma J, Kingsley C et al. (2005). Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev 19: 2560–2570.

    Article  CAS  Google Scholar 

  • Lee JW, Kusumoto R, Doherty KM, Lin GX, Zeng W, Cheng WH et al. (2005). Modulation of Werner syndrome protein function by a single mutation in the conserved RecQ domain. J Biol Chem 280: 39627–39636.

    Article  CAS  Google Scholar 

  • Li B, Comai L . (2000). Functional interaction between Ku and the werner syndrome protein in DNA end processing. J Biol Chem 275: 28349–28352.

    Article  CAS  Google Scholar 

  • Li L, Nakajima S, Komatsu K, Nussenzweig A, Shimamoto A, Oshima J et al. (2005). Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci 118: 4153–4162.

    Article  Google Scholar 

  • Linger JG, Tyler JK . (2005). The Yeast Histone chaperone chromatin assembly factor 1 protects against double-strand DNA-damaging agents. Genetics 171: 1513–1522.

    Article  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK Sargent DF, Richmond TJ . (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.

    Article  CAS  Google Scholar 

  • Marciniak RA, Lombard DB, Bradley-Johnson F, Guarente L . (1998). Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci USA 95: 6686–6692.

    Article  Google Scholar 

  • Martini E, Roche DMJ, Marheineke K, Verreault A, Almouzni G . (1998). Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J Cell Biol 143: 563–575.

    Article  CAS  Google Scholar 

  • Moggs JG, Grandi P, Quivy J-P, Jonsson ZO, Hübscher U, Becker PB et al. (2000). A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol 20: 1206–1218.

    Article  CAS  Google Scholar 

  • Nabatiyan A, Krude T . (2004). Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol Cell Biol 24: 2853–2862.

    Article  CAS  Google Scholar 

  • Nabatiyan A, Szüts D, Krude T . (2006). Induction of CAF-1 Expression in Response to DNA Strand Breaks in Quiescent Human Cells. Mol Biol Cell 26: 1839–1849.

    Article  Google Scholar 

  • Opresko PL, Cheng WH, Bohr VA . (2004b). Junction of RecQ helicase biochemistry and human disease. J Biol Chem 279: 18099–18102.

    Article  CAS  Google Scholar 

  • Opresko PL, Cheng WH, von Kobbe C, Harrigan JA, Bohr VA . (2003). Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogen 24: 791–802.

    Article  CAS  Google Scholar 

  • Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S et al. (2004a). The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14: 763–774.

    Article  CAS  Google Scholar 

  • Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA . (2002). Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277: 41110–41119.

    Article  CAS  Google Scholar 

  • Orren DK, Machwe A, Karmakar P, Piotrowski J, Cooper MP, Bohr VA . (2001). A functional interaction of Ku with Werner exonuclease facilitates digestion of damaged DNA. Nucleic Acids Res 29: 1926–1934.

    Article  CAS  Google Scholar 

  • Oshima J, Huang S, Pae C, Campisi J, Schiestl RH . (2002). Lack of WRN results in extensive deletion at nonhomologous joining ends. Cancer Res 62: 547–551.

    CAS  PubMed  Google Scholar 

  • Ozgenc A, Loeb LA . (2005). Current advances in unraveling the function of the Werner syndrome protein. Mut Res 577: 237–251.

    Article  CAS  Google Scholar 

  • Pedrazzi G, Bachrati CZ, Selak N, Studer I, Petkovic M, Hickson ID et al. (2003). The Bloom's syndrome helicase interacts directly with the human DNA mismatch repair protein hMSH6. Biol Chem 384: 1155–1164.

    Article  CAS  Google Scholar 

  • Petkovic M, Dietschy T, Freire R, Jiao R, Stagljar I . (2005). The human Rothmund–Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci 118: 4261–4269.

    Article  CAS  Google Scholar 

  • Poot M, Yom JS, Whang SH, Kato JT, Gollahon KA, Rabinovitch PS . (2001). Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J 15: 1224–1226.

    Article  CAS  Google Scholar 

  • Prakash S, Prakash L . (2000). Nucleotide excision repair in yeast. Mutat Res 451: 13–24.

    Article  CAS  Google Scholar 

  • Rodriquez-Lopez AM, Jackson DA, Nehlin JO, Iborra F, Warren AV, Cox LS . (2003). Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner's syndrome, and an essential replication factor, PCNA. Mech Aging Dev 124: 167–174.

    Article  Google Scholar 

  • Sakamoto S, Nishikawa K, Heo SJ, Goto M, Furuichi Y, Shimamoto A . (2001). Werner helicase relocates into nuclear foci in response to DNA damaging agents and co-localizes with RPA and Rad51. Genes Cells 6: 421–430.

    Article  CAS  Google Scholar 

  • Sharma S, Sommers JA, Brosh Jr RM . (2004a). In vivo function of the conserved non-catalytic domain of Werner syndrome helicase in DNA replication. Hum Mol Genet 13: 2247–2261.

    Article  CAS  Google Scholar 

  • Sharma S, Sommers JA, Gary RK, Friedrich-Heineken E, Hubscher U, Brosh Jr RM . (2005). The interaction site of Flap Endonuclease-1 with WRN helicase suggests a coordination of WRN and PCNA. Nucleic Acids Res 33: 6769–6781.

    Article  CAS  Google Scholar 

  • Sharma S, Sommers JA, Wu L, Bohr VA, Hickson ID, Brosh Jr RM . (2004b). Stimulation of flap endonuclease-1 by the Bloom's syndrome protein. J Biol Chem 279: 9847–9856.

    Article  CAS  Google Scholar 

  • Shen JC, Gray MD, Oshima J, Loeb LA . (1998). Characterization of Werner syndrome protein DNA helicase activity: directionality, substrate dependence and stimulation by replication protein A. Nucleic Acids Res 26: 2879–2885.

    Article  CAS  Google Scholar 

  • Shibahara K, Stillman B . (1999). Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96: 575–585.

    Article  CAS  Google Scholar 

  • Smith S, Stillman B . (1989). Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58: 15–25.

    Article  CAS  Google Scholar 

  • Spillare EA, Robles AI, Wang XW, Shen JC, Yu CE, Schellenberg GD et al. (1999). p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev 13: 1355–1360.

    Article  CAS  Google Scholar 

  • Szekely AM, Chen YH, Zhang C, Oshima J, Weissman SM . (2000). Werner protein recruits DNA polymerase delta to the nucleolus. Proc Natl Acad Sci USA 97: 11365–11370.

    Article  CAS  Google Scholar 

  • Tyler JK, Bulger M, Kamakaka RT, Kobayashi R, Kadonaga JT . (1996). The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylase-associated protein. Mol Cell Biol 16: 6149–6159.

    Article  CAS  Google Scholar 

  • Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ et al. (2001). Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 21: 6574–6584.

    Article  CAS  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B . (1996). Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87: 95–104.

    Article  CAS  Google Scholar 

  • von Kobbe C, Harrigan JA, May A, Opresko PL, Dawut L, Cheng WH et al. (2003). Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol Cell Biol 23: 8601–8613.

    Article  CAS  Google Scholar 

  • von Kobbe C, Harrigan JA, Schreiber V, Stiegler P, Piotrowski J, Dawut L et al. (2004). Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Res 32: 4003–4014.

    Article  CAS  Google Scholar 

  • von Kobbe C, Karmakar P, Dawut L, Opresko P, Zeng X, Brosh Jr RM et al. (2002). Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins. J Biol Chem 277: 22035–22044.

    Article  CAS  Google Scholar 

  • Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI et al. (2001). Functional interaction of p53 and BLM DNA helicase in apoptosis. J Biol Chem 276: 32948–32955.

    Article  CAS  Google Scholar 

  • Wolffe AP . (1998). Chromatin: Structure and Function, 3rd edn. Academic Press, New York.

    Google Scholar 

  • Wu L, Davies DL, North PS, Goulaouic H, Riou JF, Turley H et al. (2000). The Bloom's syndrome gene product interacts with topoisomerase III. J Biol Chem 275: 9636–9644.

    Article  CAS  Google Scholar 

  • Xue Y, Ratcliff GC, Wang H, Davis-Searles PR, Gray MD, Erie DA et al. (2002). A minimal exonuclease domain of WRN forms a hexamer on DNA and possesses both 3′–5′ exonuclease and 5′-protruding strand endonuclease activities. Biochemistry 41: 2901–2912.

    Article  CAS  Google Scholar 

  • Yang Q, Zhang R, Wang XW, Spillare EA, Linke SP, Subramanian D et al. (2002). The processing of Holliday junctions by BLM and WRN helicases is regulated by p53. J Biol Chem 277: 31980–31987.

    Article  CAS  Google Scholar 

  • Yannone SM, Roy S, Chan DW, Murphy MB, Huang S, Campisi J et al. (2001). Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase. J Biol Chem 276: 38242–38248.

    CAS  PubMed  Google Scholar 

  • Ye X, Franco AA, Santos H, Nelson DM, Kaufman PD, Adams PD . (2003). Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 11: 341–351.

    Article  CAS  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R et al. (1996). Positional cloning of the Werner's syndrome gene. Science 272: 258–262.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Oleg Georgiev and Walter Schaffner for HeLa S100 extracts, Genevieve Almouzni for chromatin assembly reagents and anti-hp150 antibodies, Steve Matson for UvrD protein, and Grant Brown and Dieter Egli for comments on the manuscript. RJ is supported in part by the NSFC (Grant 30370791 and 30428029) and 973 program (2005CB522804). ISt group is financed by grants from the Canadian Government, Canadian Institute for Health Research (CIHR), Genome Canada, Novartis, Union Bank of Switzerland, Gebert Rüf Foundation, and the Swiss Cancer League (OCS-01310-02-2003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Jiao or I Stagljar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, R., Harrigan, J., Shevelev, I. et al. The Werner syndrome protein is required for recruitment of chromatin assembly factor 1 following DNA damage. Oncogene 26, 3811–3822 (2007). https://doi.org/10.1038/sj.onc.1210150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210150

Keywords

This article is cited by

Search

Quick links