Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The transmembranal and cytoplasmic forms of protein tyrosine phosphatase epsilon physically associate with the adaptor molecule Grb2

Abstract

The protein tyrosine phosphatase Epsilon (PTPε) gene gives rise to two physiologically-distinct protein products – a transmembranal, receptor-like form and a cytoplasmic, non-receptor form. Previous studies have suggested a link between expression of transmembranal PTPε and transformation of mouse mammary epithelium specifically by ras or neu, although little is known about the underlying molecular mechanisms; cytoplasmic PTPε is believed to function mainly in hematopoietic tissues. As part of our efforts to understand PTPε function at the molecular level, we demonstrate here that both forms of PTPε associate with the adaptor molecule Grb2 in vivo. Binding is mediated by the SH2 domain of Grb2; this domain binds exclusively to the carboxy-terminal phosphotyrosine of cytoplasmic PTPε(Y638), and probably to additional phosphotyrosine residues in transmembranal PTPε. Through its SH2 domain, Grb2 can constitutively associate with transmembranal PTPε in mammary tumors initiated by ras or neu, and can be induced to associate with cytoplasmic PTPε in Jurkat T-cells following stimulation of T-cell receptor signaling by pervanadate. These findings indicate that tyrosine phosphorylation of PTPε and subsequent binding to Grb may link this phosphatase to downstream events which transduce signals from the cell membrane to its interior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Barford D, Jia Z and Tonks NK. . 1995 Nature Struct. Biol. 2: 1043–1053.

  • Barford D and Neel BG. . 1998 Structure 6: 249–254.

  • Bennett AM, Tang TL, Sugimoto S, Walsh CT and Neel BG. . 1994 Proc. Natl. Acad. Sci. USA 91: 7335–7339.

  • Charest A, Wagner J, Kwan M and Tremblay ML. . 1997 Oncogene 14: 1643–1651.

  • Chen C and Okayama H. . 1987 Mol. Cell Biol. 7: 2745–2752.

  • den Hertog J and Hunter T. . 1996 EMBO J. 15: 3016–3027.

  • den Hertog J, Tracy S and Hunter T. . 1994 EMBO J 13: 3020–3032.

  • Elson A, Kozak CA, Morton CC, Weremowicz S and Leder P. . 1996 Genomics 31: 373–375.

  • Elson A and Leder P. . 1995a J. Biol. Chem. 270: 26116–26122.

  • Elson A and Leder P. . 1995b Proc. Natl. Acad. Sci. USA 92: 12235–12239.

  • Feng GS and Pawson T. . 1994 Trends Genet. 10: 54–58.

  • Frearson JA and Alexander DR. . 1997 Bioessays 19: 417–427.

  • Hao L, Tiganis T, Tonks NK and Charbonneau H. . 1997 J. Biol. Chem. 272: 29332–29339.

  • Hecht D and Zick Y. . 1992 Biochem. Biophys. Res. Commun. 188: 773–779.

  • Howe LR and Weiss A. . 1995 Trends Biochem. Sci. 20: 59–64.

  • Hunter T. . 1995 Cell 80: 225–236.

  • Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ and Ramachandran C. . 1997 J. Biol. Chem. 272: 843–851.

  • Imbert V, Peyron JF, Farahi-Far D, Mari B, Auberger P and Rossi B. . 1994 Biochem J. 297: 163–173.

  • Imboden JB and Koretsky GA. . 1995 Curr. Biol. 5: 727–729.

  • Kon-Kozlowski M, Pani G, Pawson T and Siminovitch KA. . 1996 J. Biol. Chem. 271: 3856–3862.

  • Krueger NX, Streuli M and Saito H. . 1990 EMBO J. 9: 3241–3252.

  • Leder A, Kuo A, Cardiff RD, Sinn E and Leder P. . 1990 Proc. Natl. Acad. Sci. USA 87: 9178–9182.

  • Lee JM, Fournel M, Veillette A and Branton PE. . 1996 Oncogene 12: 253–263.

  • Li N, Batzer A, Daly R, Yajnik V, Skolnik E, Chardin P, Bar-Sagi D, Margolis B and Schlessinger J. . 1993 Nature 363: 85–88.

  • Li W, Nishimura R, Kashishian A, Batzer AG, Kim WJ, Cooper JA and Schlessinger J. . 1994 Mol. Cell Biol. 14: 509–517.

  • Lim KL, Lai DS, Kalousek MB, Wang Y and Pallen CJ. . 1997 Eur. J. Biochem. 245: 693–700.

  • Mauro LJ and Dixon JE. . 1994 Trends Biochem. Sci. 19: 151–155.

  • Moller NP, Moller KB, Lammers R, Kharitonenkov A, Hoppe E, Wiberg FC, Sures I and Ullrich A. . 1995 J. Biol. Chem. 270: 23126–23131.

  • Mukouyama Y, Kuroyanagi H, Shirasawa T, Tomoda T, Saffen D, Oishi D and Watanabe T. . 1997 Mol. Brain Res. 50: 230–236.

  • Muller WJ, Sinn E, Pattengale PK, Wallace R and Leder P. . 1988 Cell 54: 105–115.

  • Neel BG. . 1997 Curr. Opin. Immunol. 9: 405–420.

  • Neel BG and Tonks NK. . 1997 Curr. Opin. Cell. Biol. 9: 193–204.

  • Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E and Pawson T. . 1993 Cell 73: 179–191.

  • Qian D and Weiss A. (1997). . Curr. Opin. Cell. Biol. 9: 205–212.

  • Rozakis-Adcock M, Fernley R, Wade J, Pawson T and Bowtell D. . 1993 Nature 363: 83–85.

  • Schmidt A, Rutledge SJ, Endo N, Opas EE, Tanaka H, Wesolowski G, Leu CT, Huang Z, Ramachandran C, Rodan SB and Rodan GA. . 1996 Proc. Natl. Acad. Sci. USA 93: 3068–3073.

  • Secrist JP, Burns LA, Karnitz L, Koretzky GA and Abraham RT. . 1993 J. Biol. Chem. 268: 5886–5893.

  • Sinn E, Muller W, Pattengale P, Tepler I, Wallace R and Leder P. . 1987 Cell 49: 465–475.

  • Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T, Ren R, Baltimore D, Ratnofsky S, Feldman RA and Cantley LC. . 1994 Mol. Cell Biol. 14: 2777–2785.

  • Su J, Batzer A and Sap J. . 1994 J. Biol. Chem. 269: 18731–18734.

  • Su J, Yang LT and Sap J. . 1996 J. Biol. Chem. 271: 28086–28096.

  • Sun H and Tonks NK. . 1994 Trends Biochem Sci. 19: 480–485.

  • Tailor P, Jascur T, Williams S, von Willebrand M, Coutur C and Mustelin T. . 1996 Eur. J. Biochem. 237: 736–742.

  • Tanuma N, Nakamura K and Kikuchi K. . 1999 Eur. J. Biochem. 259: 46–54.

  • Tauchi T, Feng GS, Marshall MS, Shen R, Mantel C, Pawson T and Broxmeyer HE. . 1994 J. Biol. Chem. 269: 25206–25211.

  • Tauchi T, Feng GS, Shen R, Hoatlin M, Bagby GC, Kabat D, Lu L and Broxmeyer HE. . 1995 J. Biol. Chem. 270: 5631–5635.

  • Tonks NK and Neel BG. . 1996 Cell 87: 365–368.

  • Vogel W and Ullrich A. . 1996 Cell Growth Differ. 7: 1589–1597.

  • Wang Y and Pallen CJ. . 1991 EMBO J. 10: 3231–3237.

  • Wu L, Buist A, den Hertog J and Zhang ZY. . 1997 J. Biol. Chem. 272: 6994–7002.

Download references

Acknowledgements

We gratefully acknowledge the support of Dr Philip Leder, Harvard Medical School, during the initial stages of this work. We also thank Dr Thomas M Roberts, Dana-Farber Cancer Institute, Dr Jan Sap, New York University, Dr Yosef Yarden, the Weizmann Institute of Science, and Dr Ami Aronheim, Technion-Israel Institute of Technology, for kind gifts of reagents used in this study. This research was supported by the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities, by a grant from the Leo and Julia Forchheimer Center for Molecular Genetics at the Weizmann Institute of Science, and by a Jakubskind-Cymerman Prize. A Elson is an Alon Fellow and incumbent of the Adolfo and Evelyn Blum Career Development Chair in Cancer Research at the Weizmann Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledano-Katchalski, H., Elson, A. The transmembranal and cytoplasmic forms of protein tyrosine phosphatase epsilon physically associate with the adaptor molecule Grb2. Oncogene 18, 5024–5031 (1999). https://doi.org/10.1038/sj.onc.1202883

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202883

Keywords

This article is cited by

Search

Quick links