Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Mood stabilizers, glycogen synthase kinase-3β and cell survival

Abstract

Glycogen synthase kinase-3β (GSK3β) is a central figure in many intracellular signaling systems and is directly regulated by lithium. Substantial evidence now indicates that an important property of the mood stabilizer, lithium, is to influence GSK3β-linked signaling pathways. This raises the possibility that other mood stabilizers act in a similar manner, which may include modulation of signaling systems leading to GSK3β, direct regulation of GSK3β or regulation of signaling intermediates downstream of GSK3β. Downstream targets of GSK3β, and thus potential targets of mood stabilizers, are several key transcription factors, including β-catenin, AP-1, cyclic AMP-response element binding protein, NFκB, Myc, heat shock factor-1, nuclear factor of activated T-cells and CCAAT/enhancer-binding proteins. GSK3β also is an important modulator of cell death, which may be a consequence of its regulatory effects on transcription factor activities. GSK3β facilitates apoptosis, and lithium's inhibition of GSK3β supports cell survival. Thus, signaling systems determining cell fate appear to be important targets of mood stabilizers, and these may include signaling pathways encompassing GSK3β, including transcription factors regulated by GSK3β.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Klein PS, Melton DA . A molecular mechanism for the effect of lithium ondevelopment Proc Natl Acad Sci U S A 1996 93: 8455–8459

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Stambolic V, Ruel L, Woodgett JR . Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells Curr Biol 1996 6: 1664–1668

    CAS  PubMed  Google Scholar 

  3. Parker PJ, Caudwell FB, Cohen P . Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo Eur J Biochem 1983 130: 227–234

    CAS  PubMed  Google Scholar 

  4. Jope RS, Williams MB . Lithium and brain signal transduction systems Biochem Pharmacol 1994 47: 429–441

    CAS  PubMed  Google Scholar 

  5. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR . Glycogen synthase kinase-3: functions in oncogenesis and development Biochim Biophys Acta 1992 1114: 147–162

    CAS  PubMed  Google Scholar 

  6. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B Nature 1995 378: 785–789

    CAS  PubMed  Google Scholar 

  7. Sutherland C, Leighton IA, Cohen P . Inactivation of glycogen synthase kinase-3β by phosphorylation: new kinase connections in insulin and growth-factor signalling Biochem J 1993 296: 15–19

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Goode N, Hughes K, Woodgett JR, Parker PJ . Differential regulation of glycogen synthase kinase-3β by protein kinase C isotypes J Biol Chem 1992 267: 16878–16882

    CAS  PubMed  Google Scholar 

  9. Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB . Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A Proc Natl Acad Sci U S A 2000 97: 11960–11965

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR . Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation EMBO J 1993 12: 803–808

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang QM, Fiol CJ, DePaoli-Roach AA, Roach PJ . Glycogen synthase kinase-3β is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation J Biol Chem 1994 269: 14566–14574

    CAS  PubMed  Google Scholar 

  12. Hartigan JA, Johnson GV . Transient increases in intracellular calcium result in prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase-3β-dependent pathway J Biol Chem 1999 274: 21395–21401

    CAS  PubMed  Google Scholar 

  13. Lesort M, Jope RS, Johnson GV . Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3β and Fyn tyrosine kinase J Neurochem 1999 72: 576–584

    CAS  PubMed  Google Scholar 

  14. Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, Scott CW, Lee CM . Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3β in cellular and animal models of neuronal degeneration Proc Natl Acad Sci U S A 2000 97: 11074–11079

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dale TC . Signal transduction by the Wnt family of ligands Biochem J 1998 329: 209–223

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P . Binding of GSK-3β to the APC-β-catenin complex and regulation of complex assembly Science 1996 272: 1023–1026

    CAS  PubMed  Google Scholar 

  17. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT . The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3 Genes Dev 1996 10: 1443–1454

    CAS  PubMed  Google Scholar 

  18. Yost C, Farr GH 3rd, Pierce SB, Ferkey DM, Chen MM, Kimelman D . GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis Cell 1998 93: 1031–1041

    CAS  PubMed  Google Scholar 

  19. Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, Cohen P . A GSK-3 binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and β-catenin FEBS Lett 1999 458: 247–251

    CAS  PubMed  Google Scholar 

  20. Deng T, Karin M . c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK Nature 1994 371: 171–175

    CAS  PubMed  Google Scholar 

  21. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M . Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73 Nature 1991 354: 494–496

    CAS  PubMed  Google Scholar 

  22. Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M, Hunter T . Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity Cell 1991 64: 573–584

    CAS  PubMed  Google Scholar 

  23. de Groot RP, Auwerx J, Bourouis M, Sassone-Corsi P . Negative regulation of Jun/AP-1: conserved function of glycogen synthase kinase 3 and the Drosophila kinase shaggy Oncogene 1993 8: 841–847

    CAS  PubMed  Google Scholar 

  24. Nikolakaki E, Coffer PJ, Hemelsoet R, Woodgett JR, Defize LH . Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells Oncogene 1993 8: 833–840

    CAS  PubMed  Google Scholar 

  25. Silva AJ, Kogan JH, Frankland PW, Kida S . CREB and memory Annu Rev Neurosci 1998 21: 127–148

    CAS  PubMed  Google Scholar 

  26. Shaywitz AJ, Greenberg ME . CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals Annu Rev Biochem 1999 68: 821–861

    CAS  PubMed  Google Scholar 

  27. Wang QM, Roach PJ, Fiol CJ . Use of a synthetic peptide as a selective substrate for glycogen synthase kinase 3 Anal Biochem 1994 220: 397–402

    CAS  PubMed  Google Scholar 

  28. Fiol CJ, Williams JS, Chou CH, Wang QM, Roach PJ, Andrisani OM . A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression J Biol Chem 1994 269: 32187–32193

    CAS  PubMed  Google Scholar 

  29. Bullock BP, Habener JF . Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation, and increases net charge Biochemistry 1998 37: 3795–3809

    CAS  PubMed  Google Scholar 

  30. Grimes CA, Jope RS . CREB DNA binding activity is inhibited by glycogen synthase-3β and facilitated by lithium J Neurochem 2001 78: 1219–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Morimoto RI, Kline MP, Bimston DN, Cotto JJ . The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones Essays Biochem 1997 32: 17–29

    CAS  PubMed  Google Scholar 

  32. Kline MP, Morimoto RI . Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation Mol Cell Biol 1997 17: 2107–2115

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK . Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1 J Biol Chem 1996 271: 30847–30857

    CAS  PubMed  Google Scholar 

  34. Bijur GN, Jope RS . Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3β in the regulation of HSF-1 activity J Neurochem 2000 75: 2401–2408

    CAS  PubMed  Google Scholar 

  35. Xavier IJ, Mercier PA, McLoughlin CM, Ali A, Woodgett JR, Ovsenek N . Glycogen synthase kinase 3β negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1 J Biol Chem 2000 275: 29147–29152

    CAS  PubMed  Google Scholar 

  36. He B, Meng YH, Mivechi NF . Glycogen synthase kinase 3β and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock Mol Cell Biol 1998 18: 6624–6633

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Green M, Schuetz TJ, Sullivan EK, Kingston RE . A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function Mol Cell Biol 1995 15: 3354–3362

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xia W, Voellmy R . Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers J Biol Chem 1997 272: 4094–4102

    CAS  PubMed  Google Scholar 

  39. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR . Identification of a putative regulator of early T cell activation genes Science 1988 241: 202–205

    CAS  PubMed  Google Scholar 

  40. Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A et al. Glycogen synthase kinase-3β is a negative regulator of cardiomyocyte hypertrophy J Cell Biol 2000 151: 117–130

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Graef IA, Mermelstein PG, Standkunas K, Neilson JR, Deisseroth K, Tsien RW et al. L-type calcium channels and GSK-3 regulated the activity of NF-ATc4 in hippocampal neurons Nature 1999 401: 703–708

    CAS  PubMed  Google Scholar 

  42. Ruff VA, Leach KL . Direct demonstration of NFATp dephosphorylation and nuclear localization in activated HT-2 cells using a specific NFATp polyclonal antibody J Biol Chem 1995 270: 22602–22607

    CAS  PubMed  Google Scholar 

  43. Loh C, Shaw KT, Carew J, Viola JP, Luo C, Perrino BA, Rao A . Calcineurine binds the transcription factor NFAT1 and reversibly regulates its activity J Biol Chem 1996 271: 10884–10891

    CAS  PubMed  Google Scholar 

  44. Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR . Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3 Science 1997 275: 1930–1934

    CAS  PubMed  Google Scholar 

  45. Neel BG, Gasic GP, Rogler CE, Skalka AM, Ju G, Hishinuma F et al. Molecular analysis of the c-myc locus in normal tissue and in avian leukosis virus-induced lymphomas J Virol 1982 44: 158–166

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramsay G, Hayman MJ, Bister K . Phosphorylation of specific sites in the gag-myc polyproteins encoded by MC29-type viruses correlates with their transforming ability EMBO J 1982 1: 1111–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grandori C, Cowley SM, James LP, Eisenman RN . The Myc/Max/Mad network and the transcriptional control of cell behavior Annu Rev Cell Dev Biol 2000 16: 653–699

    CAS  PubMed  Google Scholar 

  48. Sorrentino V, Drozdoff V, McKinney MD, Zeitz L, Fleissner E . Potentiation of growth factor activity by exogenous c-myc expression Proc Natl Acad Sci U S A 1986 83: 8167–8171

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H . Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max Nature 1992 359: 423–426

    CAS  PubMed  Google Scholar 

  50. Blackwood EM, Eisenman RN . Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc Science 1991 251: 1211–1217

    CAS  PubMed  Google Scholar 

  51. Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H . Sequence-specific DNA binding by the c-Myc protein Science 1990 250: 1149–1151

    CAS  PubMed  Google Scholar 

  52. Seth A, Alvarez E, Gupta S, Davis RJ . A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression J Biol Chem 1991 266: 23521–23524

    CAS  PubMed  Google Scholar 

  53. Henriksson M, Bakardjiev A, Klein G, Luscher B . Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential Oncogene 1993 8: 3199–3209

    CAS  PubMed  Google Scholar 

  54. Saksela K, Makela TP, Hughes K, Woodgett JR, Alitalo K . Activation of protein kinase C increases phosphorylation of the L-myc trans-activator domain at a GSK-3 target site Oncogene 1992 7: 347–353

    CAS  PubMed  Google Scholar 

  55. Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR . Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo Oncogene 1994 9: 59–70

    CAS  PubMed  Google Scholar 

  56. Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y . Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase J Biol Chem 1999 274: 32580–32587

    CAS  PubMed  Google Scholar 

  57. Lekstrom-Himes J, Xanthopoulos KG . Biological role of the CCAAT/enhancer-binding protein family of transcription factors J Biol Chem 1998 273: 28545–28548

    CAS  PubMed  Google Scholar 

  58. Kuo CF, Xanthopoulos KG, Darnell JE Jr . Fetal and adult localization of C/EBP: evidence for combinational action of transcription factors in cell-specific gene expression Development 1990 109: 473–481

    CAS  PubMed  Google Scholar 

  59. Yukawa K, Tanaka T, Tsuji S, Akira S . Expressions of CCAAT/Enhancer-binding proteins β and δ and their activities are intensified by cAMP signaling as well as Ca2+ calmodulin kinases activation in hippocampal neurons J Biol Chem 1998 273: 31345–31351

    CAS  PubMed  Google Scholar 

  60. MacDougald OA, Cornelius P, Liu R, Lane MD . Insulin regulates transcription of the CCAAT/enhancer binding protein (C/EBP) α, β, and δ genes in fully-differentiated 3T3-L1 adipocytes J Biol Chem 1995 270: 647–654

    CAS  PubMed  Google Scholar 

  61. Hemati N, Ross SE, Erickson RL, Groblewski GE, MacDougald OA . Signaling pathways through which insulin regulates CCAAT/enhancer binding protein α (C/EBPα) phosphorylation and gene expression in 3T3-L1 adipocytes. Correlation with GLUT4 gene expression J Biol Chem 1997 272: 25913–25919

    CAS  PubMed  Google Scholar 

  62. Ross SE, Erickson RL, Hemati N, MacDougald OA . Glycogen synthase kinase 3 is an insulin-regulated C/EBPα kinase Mol Cell Biol 1999 19: 8433–8441

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Grilli M, Memo M . Nuclear factor-κB/Rel proteins: a point of convergence of signalling pathways relevant in neuronal function and dysfunction Biochem Pharmacol 1999 57: 1–7

    CAS  PubMed  Google Scholar 

  64. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR . Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation Nature 2000 406: 86–90

    CAS  PubMed  Google Scholar 

  65. Bournat JC, Brown AM, Soler AP . Wnt-1 dependent activation of the survival factor NF-κB in PC12 cells J Neurosci Res 2000 61: 21–32

    CAS  PubMed  Google Scholar 

  66. Takashima A, Noguchi K, Sato K, Hoshino T, Imahori K . Tau protein kinase I is essential for amyloid β-protein-induced neurotoxicity Proc Natl Acad Sci U S A 1993 90: 7789–7793

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pap M, Cooper GM . Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway J Biol Chem 1998 273: 19929–19932

    CAS  PubMed  Google Scholar 

  68. Bijur GN, De Sarno P, Jope RS . Glycogen synthase kinase-3β facilitates staurosporine-and heat shock-induced apoptosis. Protection by lithium J Biol Chem 2000 275: 7583–7590

    CAS  PubMed  Google Scholar 

  69. Hetman M, Cavanaugh JE, Kimelman D, Xia Z . Role of glycogen synthase kinase-3β in neuronal apoptosis induced by trophic withdrawal J Neurosci 2000 20: 2567–2574

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Crowder RJ, Freeman RS . Glycogen synthase kinase-3β activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal J Biol Chem 2000 275: 34266–34271

    CAS  PubMed  Google Scholar 

  71. Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S . HIV-1 Tat-mediated activation of glycogen synthase kinase-3β contributes to Tat-mediated neurotoxicity J Neurochem 1999 73: 578–586

    CAS  PubMed  Google Scholar 

  72. Mandelkow EM, Drewes G, Biernat J, Gustke N, Van Lint J, Vandenheede JR et al. Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau FEBS Lett 1992 314: 315–321

    CAS  PubMed  Google Scholar 

  73. Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH . Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase Neurosci Lett 1992 147: 58–62

    CAS  PubMed  Google Scholar 

  74. Hoshi M, Takashima A, Noguchi K, Murayama M, Sato M, Kondo S et al. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3β in brain Proc Natl Acad Sci U S A 1996 93: 2719–2723

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hong M, Chen DC, Klein PS, Lee VM . Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3 J Biol Chem 1997 272: 25326–25332

    CAS  PubMed  Google Scholar 

  76. Munoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J . Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons FEBS Lett 1997 411: 183–188

    CAS  PubMed  Google Scholar 

  77. Lovestone S, Davis DR, Webster MT, Kaech S, Brion JP, Matus A et al. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations Biol Psychiatry 1999 45: 995–1003

    CAS  PubMed  Google Scholar 

  78. Xie H, Litersky JM, Hartigan JA, Jope RS, Johnson GV . The interrelationship between selective tau phosphorylation and microtubule association Brain Res 1998 798: 173–183

    CAS  PubMed  Google Scholar 

  79. Johnson GVW, Hartigan JA . Tau protein in normal and Alzheimer's disease brain: an update J Alzheimer's Dis 1999 1: 329–351

    CAS  Google Scholar 

  80. Davies SP, Reddy H, Caivano M, Cohen P . Specificity and mechanism of action of some commonly used protein kinase inhibitors Biochem J 2000 351: 95–105

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen G, Huang LD, Jiang YM, Manji HK . The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3 J Neurochem 1999 72: 1327–1330

    CAS  PubMed  Google Scholar 

  82. Ryves WJ, Harwood AJ . Lithium inhibits glycogen synthase kinase-3 by competition for magnesium Biochem Biophys Res Commun 2001 280: 720–725

    CAS  PubMed  Google Scholar 

  83. Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS . Activation of the Wnt signaling pathway: a molecular mechanism for lithium action Dev Biol 1997 185: 82–91

    CAS  PubMed  Google Scholar 

  84. Nelson RW, Gumbiner BM . A cell-free assay system for β-catenin signaling that recapitulates direct inductive events in the early xenopus laevis embryo J Cell Biol 1999 147: 367–374

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW . Serine phosphorylation-regulated ubiquitination and degradation of β-catenin J Biol Chem 1997 272: 24735–24738

    CAS  PubMed  Google Scholar 

  86. Jope RS, Song L . AP-1 and NF-κB stimulated by carbachol in human neuroblastoma SH-SY5Y cells are differentially sensitive to inhibition by lithium Brain Res Mol Brain Res 1997 50: 171–180

    CAS  PubMed  Google Scholar 

  87. Ozaki N, Chuang DM . Lithium increases transcription factor binding to AP-1 and cyclic AMP-responsive element in cultured neurons and rat brain J Neurochem 1997 69: 2336–2344

    CAS  PubMed  Google Scholar 

  88. Asghari V, Wang JF, Reiach JS, Young LT . Differential effects of mood stabilizers on Fos/Jun proteins and AP-1 DNA binding activity in human neuroblastoma SH-SY5Y cells Brain Res Mol Brain Res 1998 58: 95–102

    CAS  PubMed  Google Scholar 

  89. Yuan PX, Chen G, Huang LD, Manji HK . Lithium stimulates gene expression through the AP-1 transcription factor pathway Brain Res Mol Brain Res 1998 58: 225–230

    CAS  PubMed  Google Scholar 

  90. Jope RS . Anti-bipolar therapy: mechanism of action of lithium Mol Psychiatry 1999 4: 117–128

    CAS  PubMed  Google Scholar 

  91. Wang JF, Asghari V, Rockel C, Young LT . Cyclic AMP responsive element binding protein phosphorylation and DNA binding is decreased by chronic lithium but not valproate treatment of SH-SY5Y neuroblastoma cells Neuroscience 1999 91: 771–776

    CAS  PubMed  Google Scholar 

  92. Volonte C, Ruckenstein A . Lithium chloride promotes short-term survival of PC12 cells after serum and NGF deprivation Lithium 1993 4: 211–219

    CAS  Google Scholar 

  93. D'Mello SR, Anelli R, Calissano P . Lithium induces apoptosis in immature cerebellar granule cells but promotes survival of mature neurons Exp Cell Res 1994 211: 332–338

    CAS  PubMed  Google Scholar 

  94. Li R, Shen Y, El-Mallakh RS . Lithium protects against ouabain-induced cell death Lithium 1994 5: 211–216

    CAS  Google Scholar 

  95. Volonte C, Ciotti MT, Merlo D . LiCI promotes survival of GABAergic neurons from cerebellum and cerebral cortex: LiCI induces survival of GABAergic neurons Neurosci Lett 1994 172: 6–10

    CAS  PubMed  Google Scholar 

  96. Inouye M, Yamamura H, Nakano A . Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum J Radiat Res 1995 36: 203–208

    CAS  PubMed  Google Scholar 

  97. Grignon S, Levy N, Couraud F, Bruguerolle B . Tyrosine kinase inhibitors and cycloheximide inhibit Li+ protection of cerebellar granule neurons switched to non-depolarizing medium Eur J Pharmacol 1996 315: 111–114

    CAS  PubMed  Google Scholar 

  98. Centeno F, Mora A, Fuentes JM, Soler G, Claro E . Partial lithium-associated protection against apoptosis induced by C2-ceramide in cerebellar granule neurons Neuroreport 1998 9: 4199–4203

    CAS  PubMed  Google Scholar 

  99. Nonaka S, Hough CJ, Chuang DM . Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx Proc Natl Acad Sci USA 1998 95: 2642–2647

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nonaka S, Katsube N, Chuang DM . Lithium protects rat cerebellar granule cells against apoptosis induced by anticonvulsants, phenytoin and carbamazepine J Pharmacol Exp Ther 1998 286: 539–547

    CAS  PubMed  Google Scholar 

  101. Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J . Lithium protects cultured neurons against β-amyloid-induced neurodegeneration FEBS Lett 1999 453: 260–264

    CAS  PubMed  Google Scholar 

  102. Khodorov B, Pinelis V, Vinskaya N, Sorokina E, Grigortsevich N, Storozhevykh T . Li+ protects nerve cells against destabilization of Ca2+ homeostasis and delayed death caused by removal of external Na+ FEBS Lett 1999 448: 173–176

    CAS  PubMed  Google Scholar 

  103. Mora A, Gonzalez-Polo RA, Fuentes JM, Soler G, Centeno F . Different mechanisms of protection against apoptosis by valproate and Li+ Eur J Biochem 1999 266: 886–891

    CAS  PubMed  Google Scholar 

  104. Li R, El-Mallahk RS . A novel evidence of different mechanisms of lithium and valproate neuroprotective action on human SY5Y neuroblastoma cells: caspase-3 dependency Neurosci Lett 2000 294: 147–150

    CAS  PubMed  Google Scholar 

  105. Wei H, Le PR eds Qian Y, Wei W, Chen R, Chuang D . β-amyloid peptide-induced death of PC12 cells and cerebellar granule cell neurons is inhibited of long-term lithium treatment Eur J Pharmacol 2000 392: 117–123

    CAS  PubMed  Google Scholar 

  106. DeGregorio-Rocasolano N, Gasull T, Trullas R . Overexpression of neuronal pentraxin 1 is involved in neuronal death evoked by low K+ in cerebellar granule cells J Biol Chem 2001 276: 796–803

    CAS  PubMed  Google Scholar 

  107. Pascual T, Gonzalez JL . A protective effect of lithium on rat behaviour altered by ibotenic acid lesions of the basal forebrain cholinergic system Brain Res 1995 695: 289–292

    CAS  PubMed  Google Scholar 

  108. Nonaka S, Chuang DM . Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats Neuroreport 1998 9: 2081–2084

    CAS  PubMed  Google Scholar 

  109. Arendt T, Lehmann K, Seeger G, Gartner U . Synergistic effects of tetrahydroaminoacridine and lithium on cholinergic function after excitotoxic basal forebrain lesions in rat Pharmacopsychiatry 1999 32: 242–247

    CAS  PubMed  Google Scholar 

  110. Ikonomov OC, Petrov T, Soden K, Shisheva A, Manji HK . Lithium treatment in ovo: effects on embryonic heart rate, natural death of ciliary ganglion neurons, and brain expression of a highly conserved chicken homolog of human MTG8/ETO Dev Brain Res 2000 123: 13–24

    CAS  Google Scholar 

  111. Li X, Bijur GN, Jope RS . Glycogen synthase kinase-3β, mood stabilizers, and neuroprotection Bipolar Disord 2001 (in press)

Download references

Acknowledgements

Research in the authors’ laboratory was supported by grants from the Alzheimer's Association and the National Institutes of Health (MH38752, NS3778).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Jope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jope, R., Bijur, G. Mood stabilizers, glycogen synthase kinase-3β and cell survival. Mol Psychiatry 7 (Suppl 1), S35–S45 (2002). https://doi.org/10.1038/sj.mp.4001017

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001017

Keywords

This article is cited by

Search

Quick links