Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

The hunt for cancer-initiating cells: a history stemming from leukemia

Abstract

Conventional cancer therapies are plagued by disease relapses due to incomplete eradication of cancer-initiating cells. Evidence for cancer-initiating cells originally arose from studies in hematology and leukemia. Lessons learned from hematopoietic stem cells laid the bedrock for understanding how leukemic cells self-renew and remain in immature states. Decades later, leukemia-initiating cell techniques are now being applied to the field of solid tumors such as brain, breast, bone, colon, pancreas, lung and prostate cancer, with several cancer-initiating cell efforts led by hematologists. Different isolation techniques enriching for primitive cancer-initiating cells have been developed and are described in this review. Although the concept of cancer-initiating cells arose from studies in normal tissue stem cells, differences exist between neoplastic-initiating clones and their normal counterparts. Several efforts have uncovered aberrant molecular pathways and niche interactions unique to cancer-initiating cells. Efforts to exploit these pathways and interactions could ultimately lead to complete eradication of cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bruce WR, Van Der Gaag H . A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 1963; 199: 79–80.

    Article  CAS  PubMed  Google Scholar 

  2. Oren M . Decision making by p53: life, death and cancer. Cell Death Differ 2003; 10: 431–442.

    Article  CAS  PubMed  Google Scholar 

  3. Hengartner MO . The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    Article  CAS  PubMed  Google Scholar 

  4. Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 2005; 123: 641–653.

    Article  CAS  PubMed  Google Scholar 

  5. Inoue A, Seidel MG, Wu W, Kamizono S, Ferrando AA, Bronson RT et al. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2002; 2: 279–288.

    Article  PubMed  Google Scholar 

  6. Blasco MA . Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005; 6: 611–622.

    Article  CAS  PubMed  Google Scholar 

  7. Shay JW, Bacchetti S . A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787–791.

    Article  CAS  PubMed  Google Scholar 

  8. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  9. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  10. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000; 14: 1777–1784.

    Article  CAS  PubMed  Google Scholar 

  11. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M et al. A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 2000; 95: 1007–1013.

    CAS  PubMed  Google Scholar 

  12. Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11: 630–637.

    Article  CAS  PubMed  Google Scholar 

  13. Hotfilder M, Rottgers S, Rosemann A, Jurgens H, Harbott J, Vormoor J . Immature CD34+CD19- progenitor/stem cells in TEL/AML1-positive acute lymphoblastic leukemia are genetically and functionally normal. Blood 2002; 100: 640–646.

    Article  CAS  PubMed  Google Scholar 

  14. George AA, Franklin J, Kerkof K, Shah AJ, Price M, Tsark E et al. Detection of leukemic cells in the CD34(+)CD38(−) bone marrow progenitor population in children with acute lymphoblastic leukemia. Blood 2001; 97: 3925–3930.

    Article  CAS  PubMed  Google Scholar 

  15. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A . Characterization of acute lymphoblastic leukemia progenitor cells. Blood 2004; 104: 2919–2925.

    Article  CAS  PubMed  Google Scholar 

  16. Fialkow PJ, Jacobson RJ, Papayannopoulou T . Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 1977; 63: 125–130.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21: 926–935.

    Article  CAS  PubMed  Google Scholar 

  18. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  19. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    CAS  PubMed  Google Scholar 

  20. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    Article  CAS  PubMed  Google Scholar 

  21. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98: 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  22. Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002; 99: 16220–16225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996; 87: 1089–1096.

    CAS  PubMed  Google Scholar 

  24. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  25. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89–94.

    Article  CAS  PubMed  Google Scholar 

  26. Levis M, Murphy KM, Pham R, Kim KT, Stine A, Li L et al. Internal tandem duplications of the FLT3 gene are present in leukemia stem cells. Blood 2005; 106: 673–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100: 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  28. Shih LY, Huang CF, Wu JH, Wang PN, Lin TL, Dunn P et al. Heterogeneous patterns of FLT3 Asp(835) mutations in relapsed de novo acute myeloid leukemia: a comparative analysis of 120 paired diagnostic and relapse bone marrow samples. Clin Cancer Res 2004; 10: 1326–1332.

    Article  CAS  PubMed  Google Scholar 

  29. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G . A common precursor for hematopoietic and endothelial cells. Development 1998; 125: 725–732.

    CAS  PubMed  Google Scholar 

  30. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 2002; 8: 607–612.

    Article  CAS  PubMed  Google Scholar 

  31. Cogle CR, Wainman DA, Jorgensen ML, Guthrie SM, Mames RN, Scott EW . Adult human hematopoietic cells provide functional hemangioblast activity. Blood 2004; 103: 133–135.

    Article  CAS  PubMed  Google Scholar 

  32. Gunsilius E, Duba HC, Petzer AL, Kahler CM, Grunewald K, Stockhammer G et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000; 355: 1688–1691.

    Article  CAS  PubMed  Google Scholar 

  33. Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 2004; 351: 250–259.

    Article  CAS  PubMed  Google Scholar 

  34. Lord BI, Testa NG, Hendry JH . The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 1975; 46: 65–72.

    CAS  PubMed  Google Scholar 

  35. Taichman RS . Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 2005; 105: 2631–2639.

    Article  CAS  PubMed  Google Scholar 

  36. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    Article  PubMed  Google Scholar 

  37. Krause DS, Lazarides K, von Andrian UH, Van Etten RA . Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  38. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    Article  CAS  PubMed  Google Scholar 

  39. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J . The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006; 20: 1915–1924.

    Article  CAS  PubMed  Google Scholar 

  41. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342.

    Article  CAS  PubMed  Google Scholar 

  42. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA . Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002; 39: 193–206.

    Article  PubMed  Google Scholar 

  43. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  44. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64: 7011–7021.

    Article  CAS  PubMed  Google Scholar 

  45. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  46. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 2006; 444: 761–765.

    Article  CAS  PubMed  Google Scholar 

  47. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66: 6063–6071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lessard J, Sauvageau G . Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255–260.

    Article  CAS  PubMed  Google Scholar 

  50. Al-Hajj M, Clarke MF . Self-renewal and solid tumor stem cells. Oncogene 2004; 23: 7274–7282.

    Article  CAS  PubMed  Google Scholar 

  51. Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 2005; 7: 967–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu C, Chen Z, Chen Z, Zhang T, Lu Y . Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 2006; 8: 716–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    Article  CAS  PubMed  Google Scholar 

  54. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525–532.

    Article  CAS  PubMed  Google Scholar 

  55. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111–115.

    Article  CAS  PubMed  Google Scholar 

  56. O'Brien CA, Pollett A, Gallinger S, Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–110.

    Article  CAS  PubMed  Google Scholar 

  57. Covacci A, Telford JL, Del Giudice G, Parsonnet J, Rappuoli R . Helicobacter pylori virulence and genetic geography. Science 1999; 284: 1328–1333.

    Article  CAS  PubMed  Google Scholar 

  58. Peek Jr RM, Crabtree JE . Helicobacter infection and gastric neoplasia. J Pathol 2006; 208: 233–248.

    Article  CAS  PubMed  Google Scholar 

  59. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H et al. Gastric cancer originating from bone marrow-derived cells. Science 2004; 306: 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  60. Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, Brooks HL et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 2005; 115: 86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4(+) hemangiocytes. Nat Med 2006; 12: 557–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  63. Moreb JS, Maccow C, Schweder M, Hecomovich J . Expression of antisense RNA to aldehyde dehydrogenase class-1 sensitizes tumor cells to 4-hydroperoxycyclophosphamide in vitro. J Pharmacol Exp Ther 2000; 293: 390–396.

    CAS  PubMed  Google Scholar 

  64. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 1999; 96: 9118–9123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Storms RW, Green PD, Safford KM, Niedzwiecki D, Cogle CR, Colvin OM et al. Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34. Blood 2005; 106: 95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pearce DJ, Taussig D, Simpson C, Allen K, Rohatiner AZ, Lister TA et al. Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 2005; 23: 752–760.

    Article  CAS  PubMed  Google Scholar 

  67. De Marzo AM, Nelson WG, Meeker AK, Coffey DS . Stem cell features of benign and malignant prostate epithelial cells. J Urol 1998; 160 (6 Part 2): 2381–2392.

    Article  CAS  PubMed  Google Scholar 

  68. De Marzo AM, Meeker AK, Epstein JI, Coffey DS . Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 1998; 153: 911–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xin L, Lawson DA, Witte ON . The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 2005; 102: 6942–6947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K et al. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci USA 2005; 102: 7180–7185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H . Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA 2006; 103: 1480–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Collins AT, Habib FK, Maitland NJ, Neal DE . Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 2001; 114: 3865–3872.

    CAS  PubMed  Google Scholar 

  73. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT . CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004; 117: 3539–3545.

    Article  CAS  PubMed  Google Scholar 

  74. Hope KJ, Jin L, Dick JE . Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–743.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C R Cogle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzzeo, M., Scott, E. & Cogle, C. The hunt for cancer-initiating cells: a history stemming from leukemia. Leukemia 21, 1619–1627 (2007). https://doi.org/10.1038/sj.leu.2404768

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404768

Keywords

This article is cited by

Search

Quick links