Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction

Abstract

The dopamine D2 receptor (D2R) has been used in adenoviral delivery systems and in tumor cell xenografts as an in vivo reporter gene. D2R reporter gene expression has been non-invasively, repetitively and quantitatively imaged by positron emission tomography (PET), following systemic injection of a positron-labeled ligand (3-(2′-[18F]-fluoroethyl)-spiperone; FESP) and subsequent D2R-dependent sequestration. However, dopamine binding to the D2R can modulate cyclic AMP levels. For optimal utilization of D2R as a reporter gene, it is important to uncouple ligand-binding from Gi-protein-mediated inhibition of cAMP production. Mutation of Asp80 or Ser194 produces D2Rs that still bind [3H]spiperone in transfected cells. The D2R80A mutation completely eliminates the ability of the D2R to suppress forskolin-stimulated cAMP accumulation in response to dopamine, in cells transfected with a D2R80A expression plasmid and in cells infected with replication-defective adenovirus expressing D2R80A. The D2R194A mutation substantially reduces, but does not completely eliminate, dopamine modulation of cAMP levels. Cultured cells infected with adenoviruses expressing D2R and D2R80A demonstrated equivalent [3H]spiperone binding activity. Moreover, hepatic FESP sequestration is equivalent, following intravenous injection of adenoviruses expressing D2R and D2R80A. The D2R80A mutant, which can no longer modulate cAMP levels following ligand binding, has full capability as a PET reporter gene. Gene Therapy (2001) 8, 1490–1498.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Contag PR et al. Bioluminescent indicators in living mammals Nature Med 1998 4: 245–247

    Article  CAS  PubMed  Google Scholar 

  2. Edinger M et al. Noninvasive assessment of tumor cell proliferation in animal models Neoplasia 1999 1: 303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jacobi CA et al. In vitro and in vivo expression studies of yopE from Yersinia enterocolitica using the gfp reporter gene Mol Microbiol 1998 30: 865–882

    Article  CAS  PubMed  Google Scholar 

  4. Chishima T et al. Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression Cancer Res 1997 57: 2042–2047

    CAS  PubMed  Google Scholar 

  5. Naumov GN et al. Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis J Cell Sci 1999 112: 1835–1842

    CAS  PubMed  Google Scholar 

  6. Gambhir SS et al. Imaging transgene expression with radionuclide imaging technologies Neoplasia 2000 2: 118–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herschman HR et al. Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography J Neurosci Res 2000 59: 699–705

    Article  CAS  PubMed  Google Scholar 

  8. Tjuvajev J et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography Cancer Res 1998 58: 4333–4341

    CAS  PubMed  Google Scholar 

  9. Gambhir SS et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography Proc Natl Acad Sci USA 1999 96: 2333–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gambhir SS et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography Proc Natl Acad Sci USA 2000 97: 2785–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. MacLaren DC et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals Gene Therapy 1999 6: 785–791

    Article  CAS  PubMed  Google Scholar 

  12. Zinn KR et al. Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with 99mTc or 188Re J Nucl Med 2000 41: 887–895

    CAS  PubMed  Google Scholar 

  13. Phelps ME . Positron emission tomography provides molecular imaging of biological processes Proc Natl Acad Sci USA 2000 97: 9226–9233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cherry SR et al. MicroPET: a high resolution PET scanner for imaging small animals IEEE Trans Nucl Sci 1997 44: 1109–1143

    Article  Google Scholar 

  15. Chatziioannou AF et al. Performance evaluation of microPET: a high resolution leutetium oxyorthosilicate PET scanner for animal imaging J Nucl Med 1999 40: 1164–1175

    CAS  PubMed  Google Scholar 

  16. Neve KA et al. Pivotal role for aspartate-80 in the regulation of dopamine D2 receptor affinity for drugs and inhibition of adenylyl cyclase Mol Pharmacol 1991 39: 733–739

    CAS  PubMed  Google Scholar 

  17. Cox BA et al. Contributions of conserved serine residues to the interactions of ligands with dopamine D2 receptors J Neurochem 1992 59: 627–635

    Article  CAS  PubMed  Google Scholar 

  18. Woodward R et al. Investigation of the role of conserved serine residues in the long form of the rat D2 dopamine receptor using site-directed mutagenesis J Neurochem 1996 66: 394–402

    Article  CAS  PubMed  Google Scholar 

  19. Watts VJ et al. Selective activation of Gαo by D2L dopamine receptors in NS20Y neuroblastoma cells J Neurosci 1998 18: 8692–8699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu Y et al. Quantification of target gene expression by imaging reporter gene expression in living animals Nat Med 2000 6: 933–937

    Article  CAS  PubMed  Google Scholar 

  21. Yaghoubi S et al. Human pharmacokinetic and dosimetry studies of [18F]-FHBG, a reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression J Nucl Med (in press)

  22. Herz J, Gerard RD . Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice Proc Natl Acad Sci USA 1993 90: 2812–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vile RG, Diaz RM, Castleden S, Chong H . Targeted gene therapy for cancer: herpes simplex virus thymidine kinase gene-mediated cell killing leads to anti-tumour immunity that can be augmented by co-expression of cytokines in the tumour cells Biochem Soc Trans 1997 25: 717–722

    Article  CAS  PubMed  Google Scholar 

  24. Mesnil M, Yamasaki H . Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication Cancer Res 2000 60: 3989–3999

    CAS  PubMed  Google Scholar 

  25. Sandmair AM, Vapalahti M, Yla-Herttuala S . Adenovirus-mediated herpes simplex thymidine kinase gene therapy for brain tumors Adv Exp Med Biol 2000 465: 163–170

    Article  CAS  PubMed  Google Scholar 

  26. Pages P et al. sst2 somatostatin receptor mediates cell cycle arrest and induction of p27(Kip1). Evidence for the role of SHP-1 J Biol Chem 1999 274: 15186–15193

    Article  CAS  PubMed  Google Scholar 

  27. Weissleder R et al. In vivo magnetic resonance imaging of transgene expression Nat Med 2000 6: 351–355

    Article  CAS  PubMed  Google Scholar 

  28. Horton RM et al. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension Gene 1989 77: 61–68

    Article  CAS  PubMed  Google Scholar 

  29. Liang Q, Chen L, Fulco AJ . An efficient and optimized PCR method with high fidelity for site-directed mugagenesis PCR Meth Appl 1995 4: 269–274

    Article  CAS  Google Scholar 

  30. Gomez-Foix AM et al. Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism J Biol Chem 1992 267: 25129–25134

    CAS  PubMed  Google Scholar 

  31. Graham FL, van der Eb AJ . A new technique for the assay of infectivity of human adenovirus 5 DNA Virology 1973 52: 456–467

    Article  CAS  PubMed  Google Scholar 

  32. Qi J et al. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner Phys Med Biol 1998 43: 1001–1013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Art Catapang, Raymond Basconcillo, Judy Edwards, Khoi Nguyen, Waldemar Ladno and ManKit Ho for technical assistance, Dr K Neve for advice on cyclic AMP stimulation and analysis and Duncan MacLaren for instruction in the [3H]spiperone binding assay. This work was supported by Department of Energy award DE-FC03–87ER60615, NIH award R0–1 CA84572 (HRH) and NIH award P50 CA86306 (HRH).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Q., Satyamurthy, N., Barrio, J. et al. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8, 1490–1498 (2001). https://doi.org/10.1038/sj.gt.3301542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301542

Keywords

This article is cited by

Search

Quick links