Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The carcinoma-specific epithelial glycoprotein-2 promoter controls efficient and selective gene expression in an adenoviral context

Abstract

Adenoviral vectors are widely used in cancer gene therapy. After systemic administration however, the majority of the virus homes to the liver and the expressed transgene may cause hepatotoxicity. To restrict transgene expression to tumor cells, tumor- or tissue-specific promoters are utilized. The tumor antigen epithelial glycoprotein-2 (EGP-2), also known as Ep-CAM, is expressed in many cancers from different epithelial origins. In this study, the EGP-2 promoter was shown to restrict the expression of luciferase and thymidine kinase in an adenoviral context in different cell lines. In vivo, the EGP-2 promoter mediated efficient expression of luciferase in tumors but showed a 3-log lower activity in liver tissue when compared with the cytomegalovirus (CMV) promoter. Similarly, the EGP-2 promoter mediated specific cell killing after ganciclovir treatment in EGP-2-positive cells. Moreover, in vivo, this treatment regiment did not cause any rise in the liver enzymes aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT), demonstrating absence of liver toxicity. In contrast, CMV-mediated expression of thymidine kinase in combination with ganciclovir treatment resulted in high ASAT and ALAT values. This study demonstrates the value of the EGP-2 promoter to restrict transgene expression to a broad range of tumor types, thereby preventing liver toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sandmair AM, Loimas S, Puranen P, Immonen A, Kossila M, Puranen M et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther 2000; 11: 2197–2205.

    Article  CAS  PubMed  Google Scholar 

  2. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004; 10: 967–972.

    Article  CAS  PubMed  Google Scholar 

  3. Alemany R, Suzuki K, Curiel DT . Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 2000; 81: 2605–2609.

    Article  CAS  PubMed  Google Scholar 

  4. van der Eb MM, Cramer SJ, Vergouwe Y, Schagen FH, van Krieken JH, van der Eb AJ et al. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Therapy 1998; 5: 451–458.

    Article  CAS  PubMed  Google Scholar 

  5. Yamamoto M, Alemany R, Adachi Y, Grizzle WE, Curiel DT . Characterization of the cyclooxygenase-2 promoter in an adenoviral vector and its application for the mitigation of toxicity in suicide gene therapy of gastrointestinal cancers. Mol Ther 2001; 3: 385–394.

    Article  CAS  PubMed  Google Scholar 

  6. Glasgow JN, Bauerschmitz GJ, Curiel DT, Hemminki A . Transductional and transcriptional targeting of adenovirus for clinical applications. Curr Gene Ther 2004; 4: 1–14.

    Article  CAS  PubMed  Google Scholar 

  7. Nettelbeck DM, Jerome V, Muller R . Gene therapy: designer promoters for tumour targeting. Trends Genet 2000; 16: 174–181.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson LM, Swaminathan S, Zackon I, Tajuddin AK, Thimmapaya B, Weitzman SA . Adenovirus-mediated tissue-targeted expression of the HSVtk gene for the treatment of breast cancer. Gene Therapy 1999; 6: 854–864.

    Article  CAS  PubMed  Google Scholar 

  9. Lee SJ, Kim HS, Yu R, Lee K, Gardner TA, Jung C et al. Novel prostate-specific promoter derived from PSA and PSMA enhancers. Mol Ther 2002; 6: 415–421.

    Article  CAS  PubMed  Google Scholar 

  10. Gotoh A, Ko SC, Shirakawa T, Cheon J, Kao C, Miyamoto T et al. Development of prostate-specific antigen promoter-based gene therapy for androgen-independent human prostate cancer. J Urol 1998; 160: 220–229.

    Article  CAS  PubMed  Google Scholar 

  11. Siders WM, Halloran PJ, Fenton RG . Melanoma-specific cytotoxicity induced by a tyrosinase promoter-enhancer/herpes simplex virus thymidine kinase adenovirus. Cancer Gene Ther 1998; 5: 281–291.

    CAS  PubMed  Google Scholar 

  12. McLaughlin PM, Trzpis M, Kroesen BJ, Helfrich W, Terpstra P, Dokter WH et al. Use of the EGP-2/Ep-CAM promoter for targeted expression of heterologous genes in carcinoma derived cell lines. Cancer Gene Ther 2004; 11: 603–612.

    Article  CAS  PubMed  Google Scholar 

  13. Balzar M, Winter MJ, de Boer CJ, Litvinov SV . The biology of the 17-1A antigen (Ep-CAM). J Mol Med 1999; 77: 699–712.

    Article  CAS  PubMed  Google Scholar 

  14. Winter MJ, Nagtegaal ID, van Krieken JH, Litvinov SV . The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am J Pathol 2003; 163: 2139–2148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Punt CJ, Nagy A, Douillard JY, Figer A, Skovsgaard T, Monson J et al. Edrecolomab alone or in combination with fluorouracil and folinic acid in the adjuvant treatment of stage III colon cancer: a randomised study. Lancet 2002; 360: 671–677.

    Article  CAS  PubMed  Google Scholar 

  16. de Boer CJ, van Krieken JH, Janssen-van Rhijn CM, Litvinov SV . Expression of Ep-CAM in normal, regenerating, metaplastic, and neoplastic liver. J Pathol 1999; 188: 201–206.

    Article  CAS  PubMed  Google Scholar 

  17. Bett AJ, Prevec L, Graham FL . Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 1993; 67: 5911–5921.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gires O, Eskofier S, Lang S, Zeidler R, Munz M . Cloning and characterisation of a 1.1 kb fragment of the carcinoma-associated epithelial cell adhesion molecule promoter. Anticancer Res 2003; 23: 3255–3261.

    CAS  PubMed  Google Scholar 

  19. Yamamoto M, Davydova J, Takayama K, Alemany R, Curiel DT . Transcription initiation activity of adenovirus left-end sequence in adenovirus vectors with e1 deleted. J Virol 2003; 77: 1633–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Black ME, Kokoris MS, Sabo P . Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing. Cancer Res 2001; 61: 3022–3026.

    CAS  PubMed  Google Scholar 

  21. Wiewrodt R, Amin K, Kiefer M, Jovanovic VP, Kapoor V, Force S et al. Adenovirus-mediated gene transfer of enhanced herpes simplex virus thymidine kinase mutants improves prodrug-mediated tumor cell killing. Cancer Gene Ther 2003; 10: 353–364.

    Article  CAS  PubMed  Google Scholar 

  22. de Leij L, Postmus PE, Buys CH, Elema JD, Ramaekers F, Poppema S et al. Characterization of three new variant type cell lines derived from small cell carcinoma of the lung. Cancer Res 1985; 45: 6024–6033.

    CAS  PubMed  Google Scholar 

  23. Heideman DA, Snijders PJ, Craanen ME, Bloemena E, Meijer CJ, Meuwissen SG et al. Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors. Cancer Gene Ther 2001; 8: 342–351.

    Article  CAS  PubMed  Google Scholar 

  24. Bijl J, van Oostveen JW, Kreike M, Rieger E, van der Raaij-Helmer LM, Walboomers JM et al. Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue. Blood 1996; 87: 1737–1745.

    CAS  PubMed  Google Scholar 

  25. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McLaughlin PM, Harmsen MC, Dokter WH, Kroesen BJ, van der MH, Brinker MG et al. The epithelial glycoprotein 2 (EGP-2) promoter-driven epithelial-specific expression of EGP-2 in transgenic mice: a new model to study carcinoma-directed immunotherapy. Cancer Res 2001; 61: 4105–4111.

    CAS  PubMed  Google Scholar 

  27. Barker SD, Coolidge CJ, Kanerva A, Hakkarainen T, Yamamoto M, Liu B et al. The secretory leukoprotease inhibitor (SLPI) promoter for ovarian cancer gene therapy. J Gene Med 2003; 5: 300–310.

    Article  CAS  PubMed  Google Scholar 

  28. Casado E, Gomez-Navarro J, Yamamoto M, Adachi Y, Coolidge CJ, Arafat WO et al. Strategies to accomplish targeted expression of transgenes in ovarian cancer for molecular therapeutic applications. Clin Cancer Res 2001; 7: 2496–2504.

    CAS  PubMed  Google Scholar 

  29. Wesseling JG, Yamamoto M, Adachi Y, Bosma PJ, van Wijland M, Blackwell JL et al. Midkine and cyclooxygenase-2 promoters are promising for adenoviral vector gene delivery of pancreatic carcinoma. Cancer Gene Ther 2001; 8: 990–996.

    Article  CAS  PubMed  Google Scholar 

  30. Haviv YS, Curiel DT . Conditional gene targeting for cancer gene therapy. Adv Drug Deliv Rev 2001; 53: 135–154.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu ZB, Makhija SK, Lu B, Wang M, Kaliberova L, Liu B et al. Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther 2004; 11: 256–262.

    Article  CAS  PubMed  Google Scholar 

  32. Peng XY, Won JH, Rutherford T, Fujii T, Zelterman D, Pizzorno G et al. The use of the L-plastin promoter for adenoviral-mediated, tumor-specific gene expression in ovarian and bladder cancer cell lines. Cancer Res 2001; 61: 4405–4413.

    CAS  PubMed  Google Scholar 

  33. Momburg F, Moldenhauer G, Hammerling GJ, Moller P . Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res 1987; 47: 2883–2891.

    CAS  PubMed  Google Scholar 

  34. Steinwaerder DS, Lieber A . Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo. Gene Therapy 2000; 7: 556–567.

    Article  CAS  PubMed  Google Scholar 

  35. Vassaux G, Hurst HC, Lemoine NR . Insulation of a conditionally expressed transgene in an adenoviral vector. Gene Therapy 1999; 6: 1192–1197.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant R03 AR46864, NIH Grant R01 CA94084, NIH Grant R01 DK63615 (to MY) and by NIH Grant R01 CA86881 (to DTC). We are grateful to DAM Heideman from the VUMC, Amsterdam, The Netherlands for advice on RT-PCR and to B Dontje and A van Loenen-Weemaes from the RUG, Groningen, The Netherlands for their help with the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M G Rots.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gommans, W., van Eert, S., McLaughlin, P. et al. The carcinoma-specific epithelial glycoprotein-2 promoter controls efficient and selective gene expression in an adenoviral context. Cancer Gene Ther 13, 150–158 (2006). https://doi.org/10.1038/sj.cgt.7700882

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700882

Keywords

This article is cited by

Search

Quick links