Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of the NF-κB pathway enhances TRAIL-mediated apoptosis in neuroblastoma cells

Abstract

Neuroblastoma is the most common solid extracranial neoplasm in children and causes many deaths. Despite treatment advances, prognosis for neuroblastoma remains poor, and a critical need exists for the development of new treatment regimens. TNF-related apoptosis-inducing-ligand (TRAIL) induces cell death in a variety of tumors, but not in normal tissues. Moreover, TRAIL is nontoxic, making it a strong antitumor therapeutic candidate. We demonstrate that introduction of the TRAIL gene into neuroblastoma cell lines using an adenoviral vector leads to apoptotic cell death. RT-PCR and flow-cytometric analyses demonstrated that TRAIL's effect is mediated primarily via the TRAIL R2 receptor. As TRAIL can activate the nuclear factor-κB (NF-κB) signaling pathway, which can exert an antiapoptotic effect, we hypothesized that inhibition of NF-κB signaling may augment TRAIL's killing effects. TRAIL-mediated cell death was enhanced when neuroblastoma cells were simultaneously infected with a dominant-negative mutant of IκB kinase, a kinase essential for NF-κB activation. The combination of blockade of NF-κB signaling and expression of TRAIL induced apoptotic death in a greater proportion of SKNSH cells than did either treatment alone. Thus, concurrent inhibition of the NF-κB pathway and the induction of TRAIL-mediated apoptosis may become a useful approach for the treatment of neuroblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Humpl T . Neuroblastoma. World J Urol. 1995;13:233–239.

    Article  CAS  PubMed  Google Scholar 

  2. De Bernardi B, Conte M, Nigro M, et al. Neuroblastoma: update on clinical aspects and therapy. Pediatr Med Chir. 1994;16:7–14.

    CAS  PubMed  Google Scholar 

  3. Johnstone RW, Ruefli AA, Lowe SW . Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002; 108:153–164.

    Article  CAS  PubMed  Google Scholar 

  4. McGill G . Apoptosis in tumorigenesis and cancer therapy. Front Biosci. 1997;2:d353–d379.

    Article  CAS  PubMed  Google Scholar 

  5. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation. Science. 1998;281:1305–1308.

    Article  CAS  PubMed  Google Scholar 

  6. Griffith TS, Broghammer EL . Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther. 2001;4:257–266.

    Article  CAS  PubMed  Google Scholar 

  7. French LE, Tschopp J . The TRAIL to selective tumor death. Nat Med. 1999;5:146–147.

    Article  CAS  PubMed  Google Scholar 

  8. Griffith TS, Lynch DH . TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol. 1998;10:559–563.

    Article  CAS  PubMed  Google Scholar 

  9. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 1999;5:157–163.

    Article  CAS  PubMed  Google Scholar 

  10. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors. Curr Opin Cell Biol. 1999;11:255–260.

    Article  CAS  PubMed  Google Scholar 

  11. Griffith TS, Anderson RD, Davidson BL, et al. Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol. 2000;165:2886–2894.

    Article  CAS  PubMed  Google Scholar 

  12. Li ZW, Chu W, Hu Y, et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med. 1999;189:1839–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanlioglu S, Luleci G, Thomas KW . Simultaneous inhibition of Rac1 and IKK pathways sensitizes lung cancer cells to TNFalpha-mediated apoptosis. Cancer Gene Ther. 2001;8:897–905.

    Article  CAS  PubMed  Google Scholar 

  14. Flick DA, Gifford GE . Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Methods. 1984;68:167–175.

    Article  CAS  PubMed  Google Scholar 

  15. Fadok VA, Savill JS, Haslett C, et al. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol. 1992;149:4029–4035.

    CAS  PubMed  Google Scholar 

  16. Fadok VA, Voelker DR, Campbell PA, et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148:2207–2216.

    CAS  PubMed  Google Scholar 

  17. Thiagarajan P, Tait JF . Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J Biol Chem. 1990;265:17420–17423.

    CAS  PubMed  Google Scholar 

  18. Raynal P, Pollard HB . Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994;1197:63–93.

    Article  CAS  PubMed  Google Scholar 

  19. Koopman G, Reutelingsperger CP, Kuijten GA, et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994;84:1415–1420.

    CAS  PubMed  Google Scholar 

  20. Martin SJ, Reutelingsperger CP, McGahon AJ, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995;182:1545–1556.

    Article  CAS  PubMed  Google Scholar 

  21. Abe K, Kurakin A, Mohseni-Maybodi M, et al. The complexity of TNF-related apoptosis-inducing ligand. Ann NY Acad Sci. 2000;926:52–63.

    Article  CAS  PubMed  Google Scholar 

  22. Griffith TS, Chin WA, Jackson GC, et al. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol. 1998;161:2833–2840.

    CAS  PubMed  Google Scholar 

  23. Karacay B, O’Dorisio MS, Summers M, et al. VIP receptor 1 (VPAC1) promoter targets the expression of a reporter gene to cerebellum and adrenal medulla in transgenic mice. Regul Pept. 2003;116:1–12.

    Article  CAS  PubMed  Google Scholar 

  24. Beg AA, Baltimore D . An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science. 1996;274:782–784.

    Article  CAS  PubMed  Google Scholar 

  25. Chaudhary PM, Eby M, Jasmin A, et al. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity. 1997;7:821–830.

    Article  CAS  PubMed  Google Scholar 

  26. Hopkins-Donaldson S, Bodmer JL, Bourloud KB, et al. Loss of caspase-8 expression in neuroblastoma is related to malignancy and resistance to TRAIL-induced apoptosis. Med Pediatr Oncol. 2000;35:608–611.

    Article  CAS  PubMed  Google Scholar 

  27. Yang X, Thiele CJ . Targeting the tumor necrosis factor-related apoptosis-inducing ligand path in neuroblastoma. Cancer Lett. 2003;197:137–143.

    Article  CAS  PubMed  Google Scholar 

  28. Teitz T, Wei T, Valentine MB, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med. 2000;6:529–535.

    Article  CAS  PubMed  Google Scholar 

  29. Eggert A, Grotzer MA, Zuzak TJ, et al. Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res. 2001;61:1314–1319.

    CAS  PubMed  Google Scholar 

  30. Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science. 1996;274:787–789.

    Article  CAS  PubMed  Google Scholar 

  31. Lipton SA . Janus faces of NF-kappa B: neurodestruction versus neuroprotection. Nat Med. 1997;3:20–22.

    Article  CAS  PubMed  Google Scholar 

  32. Ryan KM, Ernst MK, Rice NR, et al. Role of NF-kappaB in p53-mediated programmed cell death. Nature. 2000;404:892–897.

    Article  CAS  PubMed  Google Scholar 

  33. Bian X, Opipari Jr AW, Ratanaproeksa AB, et al. Constitutively active NFkappa B is required for the survival of S-type neuroblastoma. J Biol Chem. 2002;277:42144–42150.

    Article  CAS  PubMed  Google Scholar 

  34. Bours V, Dejardin E, Goujon-Letawe F, et al. The NF-kappa B transcription factor and cancer: high expression of NF-kappa B- and I kappa B-related proteins in tumor cell lines. Biochem Pharmacol. 1994;47:145–149.

    Article  CAS  PubMed  Google Scholar 

  35. Visconti R, Cerutti J, Battista S, et al. Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkappaB p65 protein expression. Oncogene. 1997;15:1987–1994.

    Article  CAS  PubMed  Google Scholar 

  36. Herrmann JL, Beham AW, Sarkiss M, et al. Bcl-2 suppresses apoptosis resulting from disruption of the NF-kappa B survival pathway. Exp Cell Res. 1997;237:101–109.

    Article  CAS  PubMed  Google Scholar 

  37. Devalaraja MN, Wang DZ, Ballard DW, et al. Elevated constitutive IkappaB kinase activity and IkappaB-alpha phosphorylation in Hs294T melanoma cells lead to increased basal MGSA/GRO-alpha transcription. Cancer Res. 1999;59:1372–1377.

    CAS  PubMed  Google Scholar 

  38. Rayet B, Gelinas C . Aberrant rel/nfkb genes and activity in human cancer. Oncogene. 1999;18:6938–6947.

    Article  CAS  PubMed  Google Scholar 

  39. Dejardin E, Deregowski V, Chapelier M, et al. Regulation of NF-kappaB activity by I kappaB-related proteins in adenocarcinoma cells. Oncogene. 1999;18:2567–2577.

    Article  CAS  PubMed  Google Scholar 

  40. Ravi R, Bedi GC, Engstrom LW, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol. 2001;3:409–416.

    Article  CAS  PubMed  Google Scholar 

  41. Hersey P, Zhang XD . How melanoma cells evade trail-induced apoptosis. Nat Rev Cancer. 2001;1:142–150.

    Article  CAS  PubMed  Google Scholar 

  42. Hu WH, Johnson H, Shu HB . Tumor necrosis factor-related apoptosis-inducing ligand receptors signal NF-kappaB and JNK activation and apoptosis through distinct pathways. J Biol Chem. 1999;274:30603–30610.

    Article  CAS  PubMed  Google Scholar 

  43. Mayo MW, Baldwin AS . The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta. 2000;1470:M55–M62.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Children's Miracle Network (to BK), Akdeniz University Scientific Research Division Administration (to SS), and National Cancer Institute, Holden Comprehensive Cancer Center of the University of Iowa, and Howard Hughes Medical Research Institute Collaborative Grant (to DJB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahri Karacay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karacay, B., Sanlioglu, S., Griffith, T. et al. Inhibition of the NF-κB pathway enhances TRAIL-mediated apoptosis in neuroblastoma cells. Cancer Gene Ther 11, 681–690 (2004). https://doi.org/10.1038/sj.cgt.7700749

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700749

Keywords

This article is cited by

Search

Quick links