Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor-specific gene expression using regulatory elements of the glucose transporter isoform 1 gene

Abstract

In order to achieve tumor-specific targeting of adeno-associated virus (AAV)-mediated gene expression, the promoter of the glucose transporter isoform 1 (GLUT1) gene was cloned upstream of the enhanced green fluorescence protein (EGFP) and the herpes simplex virus thymidine kinase (HSVtk) gene. FACS analysis performed at 48 h after transient infection with rAAV/cytomegalovirus (CMV)egfp viral particles revealed an increase of fluorescence in all the cell lines tested. However, EGFP expression under control of the GLUT1 promoter element (rAAV/GTI-1.3egfp) was limited to the tumor cells and oncogene-transformed cells. Evidence for phosphorylation of the HSVtk substrates ganciclovir (GCV) and 125I-deoxycytidine was found in all transfected tumor cell lines compared to noninfected controls (HCT116: 111%; MH3924A: 130%; HaCaT-RT3: 257% increase), but not in HaCaT and HUVEC cells. Furthermore, tumor cells and the oncogene-transformed (ras) cell line HaCaT-RT3 showed a GCV-induced reduction in cell number (HCT116: −71%; MH3924A: −43% and HaCaT-RT3: −31%). No statistically relevant cytotoxic effect was observed in HaCaT (6% decrease) and HUVEC cells (2% decrease). Furthermore, a reduction of 3H-thymidine incorporation into the DNA was seen after treatment with GCV (HCT116: 38%; MH3924A: 33% and HaCaT-RT3: 37% decrease). In a therapy study of HSVtk-expressing tumors with GCV, we achieved total tumor remission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Colombo BM, Benedetti S, Ottolenghi S, et al. The ‘bystander effect’: association of U-87 cell death with ganciclovir-mediated apoptosis of nearby cells and lack of effect in athymic mice. Hum Gene Ther. 1995;6:763–772.

    Article  CAS  PubMed  Google Scholar 

  2. Moolten FL . Tumor chemosensitivity conferred by inserted herpes virus thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 1986;4:5276–5281.

    Google Scholar 

  3. Dachs GU, Dougherty GJ, Startford IJ, et al. Targeting gene therapy to cancer: a review. Oncol Res. 1997;9:313–323.

    CAS  PubMed  Google Scholar 

  4. Anderson LM, Swaminathan S, Zackon I, et al. Adenovirus-mediated tissue-targeted expression of the HSVtk gene for the treatment of breast cancer. Gene Therapy. 1999;6:854–864.

    Article  CAS  PubMed  Google Scholar 

  5. Shirakawa T, Ko SC, Gardner TA, et al. In vivo suppression of osteosarcoma pulmonary metastasis with intravenous osteocalcin promoter-based toxic gene therapy. Cancer Gene Ther. 1998;5:274–280.

    CAS  PubMed  Google Scholar 

  6. Jiang S, Altmann A, Grimm D, et al. Tissue-specific gene expression in medullary thyroid carcinoma cells employing calcitonin regulatory elements and AAV vectors. Cancer Gene Ther. 2001;8:469–472.

    Article  CAS  PubMed  Google Scholar 

  7. Harris JD, Gutierrez AA, Hurst HC, et al. Gene therapy for cancer using tumor-specific prodrug activation. Gene Therapy. 1994;1:170–175.

    CAS  PubMed  Google Scholar 

  8. Ring CJA, Harris JD, Hurst HC, et al. Suicide gene expression induced in tumor cells transduced with recombinant adenoviral, retroviral and plasmid vectors containing the ERBB2 promoter. Gene Therapy. 1996;3:1094–1103.

    CAS  PubMed  Google Scholar 

  9. Ring CJA, Blouin P, Martin LA, et al. Use of transcriptional regulatory elements of the MUC1 and ERBB2 genes to drive tumor-selective expression of a prodrug activating enzyme. Gene Therapy. 1997;4:1045–1052.

    Article  CAS  PubMed  Google Scholar 

  10. Majumdar AS, Hughes DE, Lichtsteiner SP, et al. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatoxicity encountered with constitutive promoters. Gene Therapy. 2001;8:568–578.

    Article  CAS  PubMed  Google Scholar 

  11. Lipinski KS, Djeha HD, Ismail T, et al. High-level, β-catenin/TCF-dependent transgene expression in secondary colorectal cancer tissue. Mol Ther. 2001;4:365–371.

    Article  CAS  PubMed  Google Scholar 

  12. Warburg O . Biochem. Z. 1923;142:317.

  13. Flier JS, Mueckler MM, Usher P, et al. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science. 1987;235:1492–1495.

    Article  CAS  PubMed  Google Scholar 

  14. Hiraki Y, deHerreros AG, Birnbaum MJ . Transformation stimulates glucose transporter gene expression in the absence of protein kinase C. Proc Natl Acad Sci USA. 1989;86:8252–8256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Godwin AK, Lieberman MW . Elevation of glucose transporter, c-myc and transin RNA levels by Ha-rasT24 is independent of its effect on the cell cycle. Mol Carcinog. 1991;4:275–285.

    Article  CAS  PubMed  Google Scholar 

  16. White MK, Weber MJ . Transformation by the src oncogene alters glucose transport into rat and chicken cells by different mechanisms. Mol Cell Biol. 1988;8:138–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. White MK, Weber MJ . The src oncogene can regulate a human glucose transporter expressed in chicken embryo fibro blasts. Mol Cell Biol. 1990;10:301–306.

    Google Scholar 

  18. Sistonen L, Hölttä E, Mäkelä TP, et al. The cellular response to induction of the p21c-Ha-ras oncoprotein includes stimulation of jun gene expression. EMBO J. 1989;9:815–822.

    Article  Google Scholar 

  19. Birnbaum MJ, Haspel HC, Rosen OM . Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science. 1987;235:1495–1498.

    Article  CAS  PubMed  Google Scholar 

  20. Shawver LK, Olson SA, White MK, et al. Degradation and biosynthesis of the glucose transporter protein in chicken embryo fibroblasts transformed by the src oncogene. Mol Cell Biol. 1987;7:2112–2118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Godwin AK, Lieberman MW . Early and late responses to induction of ras T24 expression in Rat-1 cells. Oncogene. 1990;5:1231–1241.

    CAS  PubMed  Google Scholar 

  22. Nishioka T, Oda Y, Seino Y, et al. Distribution of the glucose transporters in human brain tumors. Cancer Res. 1992;52:3972–3979.

    CAS  PubMed  Google Scholar 

  23. Yamamoto T, Seino Y, Fukumoto H, et al. Over-expression of facilitative glucose transporter genes in human cancer. Biochem. Biophys Res Commun. 1990;170:223–230.

    Article  CAS  PubMed  Google Scholar 

  24. Mueckler M . Facilitative glucose transporters. Eur J Biochem. 1994;219:713–725.

    Article  CAS  PubMed  Google Scholar 

  25. Murakami T, Nishiyama T, Shirotani T, et al. Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. J Biol Chem. 1992;267:9300–9306.

    CAS  PubMed  Google Scholar 

  26. Todaka M, Nishiyama T, Murakami T, et al. The role of insulin in activation of two enhancers in the mouse GLUT1 gene. J Biol Chem. 1994;269:29265–29270.

    CAS  PubMed  Google Scholar 

  27. Flotte TR, Carter BJ . Adeno-associated virus vectors for gene therapy. Methods Enzymol. 1998;292:717–732.

    Article  CAS  PubMed  Google Scholar 

  28. Ponnazhagan S, Curiel DT, Shaw DR, et al. Adeno-associated virus for cancer gene therapy. Cancer Res. 2001;615:6313–6321.

    Google Scholar 

  29. Aitken ML, Moss RB, Waltz DA, et al. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther. 2001;12:1907–1916.

    Article  CAS  PubMed  Google Scholar 

  30. Fusenig NE, Boukamp P . Multiple stages and genetic alterations in immortalization, malignant transformation, and tumor progression of human skin keratinocytes. Mol Carcinog. 1998;23:144–158.

    Article  CAS  PubMed  Google Scholar 

  31. Boukamp P, Petrusevska RT, Breitkreutz D, et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988;106:761–771.

    Article  CAS  PubMed  Google Scholar 

  32. Haberkorn U, Khazaie K, Morr I, et al. Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase. J Nucl Med Biol. 1998;25:367–673.

    Article  CAS  Google Scholar 

  33. Salvetti A, Oreve S, Chadeuf G, et al. Factors influencing recombinant adeno-associated virus production. Hum Gene Ther. 1998;9:695–706.

    Article  CAS  PubMed  Google Scholar 

  34. Zolotukhin S, Potter M, Hauswirth WW, et al. A ‘humanized’ green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol. 1996;70:4646–4654.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Grimm D, Kern A, Rittner K, et al. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther. 1998;9:2745–2760.

    Article  CAS  PubMed  Google Scholar 

  36. Haberkorn U, Altmann A, Morr I, et al. Monitoring gene therapy with herpes simplex virus thymidine kinase in hepatoma cells: uptake of specific substrates. J Nucl Med. 1997;38:287–294.

    CAS  PubMed  Google Scholar 

  37. Bi WL, Parysk LM, Warnick R, et al. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV-tk retroviral gene therapy. Hum Gene Ther. 1993;4:725–731.

    Article  CAS  PubMed  Google Scholar 

  38. Nottebrock H, Then R . Thymidine concentrations in serum and urine of different animal species and man. Biochem Pharmacol. 1977;26:2175–2179.

    Article  CAS  PubMed  Google Scholar 

  39. Haberkorn U, Bellemann ME, Gerlach L, et al. Uncoupling of 2-fluoro-2-deoxyglucose transport and phosphorylation in rat hepatoma during gene therapy with HSV thymidine kinase. Gene Therapy. 1998;5:880–887.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Mahmut, I Morr and I Preugschat-Gumprecht for their technical help. We also thank U Schierbaum and K Leotta for their help in animal experiments. Supported by the Forschungsförderung of the University of Heidelberg and the Tumorzentrum Heidelberg-Mannheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Haberkorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieger, S., Jiang, S., Kleinschmidt, J. et al. Tumor-specific gene expression using regulatory elements of the glucose transporter isoform 1 gene. Cancer Gene Ther 11, 41–51 (2004). https://doi.org/10.1038/sj.cgt.7700654

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700654

Keywords

This article is cited by

Search

Quick links