Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition

An Author Correction to this article was published on 09 August 2018

This article has been updated

Abstract

The role of KRAS, when activated through canonical mutations, has been well established in cancer1. Here we explore a secondary means of KRAS activation in cancer: focal high-level amplification of the KRAS gene in the absence of coding mutations. These amplifications occur most commonly in esophageal, gastric and ovarian adenocarcinomas2,3,4. KRAS-amplified gastric cancer models show marked overexpression of the KRAS protein and are insensitive to MAPK blockade owing to their capacity to adaptively respond by rapidly increasing KRAS–GTP levels. Here we demonstrate that inhibition of the guanine-exchange factors SOS1 and SOS2 or the protein tyrosine phosphatase SHP2 can attenuate this adaptive process and that targeting these factors, both genetically and pharmacologically, can enhance the sensitivity of KRAS-amplified models to MEK inhibition in both in vitro and in vivo settings. These data demonstrate the relevance of copy-number amplification as a mechanism of KRAS activation, and uncover the therapeutic potential for targeting of these tumors through combined SHP2 and MEK inhibition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Amplification of wild-type KRAS associates with elevated KRAS expression and poor survival in gastric cancer.
Fig. 2: Amplified wild-type KRAS GC cell lines and organoids display differential sensitivity to MEK inhibition compared to KRAS-mutant models.
Fig. 3: Genetic targeting of SOS enhances efficacy of MEK inhibition in KRAS-amplified GC models in vitro and in vivo.
Fig. 4: Combination of SHP2 and MEK inhibition displays anti-tumor activity in wild-type KRAS-amplified gastric adenocarcinoma in vitro and in vivo.

Similar content being viewed by others

Change history

  • 09 August 2018

    In the Supplementary Information originally published with this article, a lane was missing in the β-actin blot in Supplementary Fig. 2. The lane has been added. The error has been corrected in the Supplementary Information associated with this article.

References

  1. Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ross, J. S. et al. Comprehensive genomic profiling of epithelial ovarian cancer by next generation sequencing-based diagnostic assay reveals new routes to targeted therapies. Gynecol. Oncol. 130, 554–559 (2013).

    Article  PubMed  CAS  Google Scholar 

  3. Dulak, A. M. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Dulak, A. M. et al. Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res. 72, 4383–4393 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chen, Y. et al. Identification of druggable cancer driver genes amplified across TCGA datasets. PloS ONE 9, e98293 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Das, K. et al. Mutually exclusive FGFR2, HER2, and KRAS gene amplifications in gastric cancer revealed by multicolour FISH. Cancer Lett. 353, 167–175 (2014).

    Article  PubMed  CAS  Google Scholar 

  7. Birkeland, E. et al. KRAS gene amplification and overexpression but not mutation associates with aggressive and metastatic endometrial cancer. Br. J. Cancer 107, 1997–2004 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pulciani, S., Santos, E., Long, L. K., Sorrentino, V. & Barbacid, M. ras gene amplification and malignant transformation. Mol. Cell. Biol. 5, 2836–2841 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ahronian, L. G. et al. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov. 5, 358–367 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cargnelutti, M. et al. Activation of RAS family members confers resistance to ROS1 targeting drugs. Oncotarget 6, 5182–5194 (2015).

    Article  PubMed  Google Scholar 

  11. Oddo, D. et al. Molecular landscape of acquired resistance to targeted therapy combinations in BRAF-mutant colorectal cancer. Cancer Res. 76, 4504–4515 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Valtorta, E. et al. KRAS gene amplification in colorectal cancer and impact on response to EGFR-targeted therapy. Int. J. Cancer 133, 1259–1265 (2013).

    Article  PubMed  CAS  Google Scholar 

  13. Cox, A. D. & Der, C. J. Ras history: The saga continues. Small GTPases 1, 2–27 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jokinen, E. & Koivunen, J. P. MEK and PI3K inhibition in solid tumors: rationale and evidence to date. Ther. Adv. Med. Oncol. 7, 170–180 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sun, C. et al. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep. 7, 86–93 (2014).

    Article  PubMed  CAS  Google Scholar 

  17. Vigil, D., Cherfils, J., Rossman, K. L. & Der, C. J. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat. Rev. Cancer 10, 842–857 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jeng, H. H., Taylor, L. J. & Bar-Sagi, D. Sos-mediated cross-activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis. Nat. Commun. 3, 1168 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prahallad, A. et al. PTPN11 is a central node in intrinsic and acquired resistance to targeted cancer drugs. Cell Rep. 12, 1978–1985 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Chen, Y. N. et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535, 148–152 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. Garcia Fortanet, J. et al. Allosteric inhibition of SHP2: identification of a potent, selective, and orally efficacious phosphatase inhibitor. J. Med. Chem. 59, 7773–7782 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. Dance, M., Montagner, A., Salles, J. P., Yart, A. & Raynal, P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell. Signal. 20, 453–459 (2008).

    Article  PubMed  CAS  Google Scholar 

  23. Bunda, S. et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nature Commun. 6, 8859 (2015).

    Article  CAS  Google Scholar 

  24. Zhang, S. Q. et al. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell 13, 341–355 (2004).

    Article  PubMed  Google Scholar 

  25. Agazie, Y. M. & Hayman, M. J. Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol. Cell. Biol. 23, 7875–7886 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Boykevisch, S. et al. Regulation of ras signaling dynamics by Sos-mediated positive feedback. Curr. Biol. 16, 2173–2179 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Araki, T., Nawa, H. & Neel, B. G. Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. J. Biol. Chem. 278, 41677–41684 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. Buday, L., Warne, P. H. & Downward, J. Downregulation of the Ras activation pathway by MAP kinase phosphorylation of Sos. Oncogene 11, 1327–1331 (1995).

    PubMed  CAS  Google Scholar 

  29. Kamioka, Y., Yasuda, S., Fujita, Y., Aoki, K. & Matsuda, M. Multiple decisive phosphorylation sites for the negative feedback regulation of SOS1 via ERK. J. Biol. Chem. 285, 33540–33548 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Porfiri, E. & McCormick, F. Regulation of epidermal growth factor receptor signaling by phosphorylation of the ras exchange factor hSOS1. J. Biol. Chem. 271, 5871–5877 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. Manchado, E. et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 534, 647–651 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lito, P. et al. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell 25, 697–710 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Burgess, M. R. et al. KRAS allelic imbalance enhances fitness and modulates MAP kinase dependence in cancer. Cell 168, 817–829 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. McNeill, R. S. et al. Combination therapy with potent PI3K and MAPK inhibitors overcomes adaptive kinome resistance to single agents in preclinical models of glioblastoma. Neuro-oncol. 19, 1469–1480 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zawistowski, J. S. et al. Enhancer remodeling during adaptive bypass to MEK inhibition is attenuated by pharmacologic targeting of the P-TEFb complex. Cancer Discov. 7, 302–321 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hunter, J. C. et al. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res. 13, 1325–1335 (2015).

    Article  PubMed  CAS  Google Scholar 

  37. Lito, P., Solomon, M., Li, L. S., Hansen, R. & Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 351, 604–608 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Winter, J. J. et al. Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation. J. Med. Chem. 58, 2265–2274 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Evelyn, C. R. et al. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1. Chem. Biol. 21, 1618–1628 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang, W., Fang, G. & Rudolph, J. Ras inhibition via direct Ras binding—is there a path forward? Bioorg. Med. Chem. Lett. 22, 5766–5776 (2012).

    Article  PubMed  CAS  Google Scholar 

  41. Tokunaga, R. et al. Fibroblast growth factor receptor 2 expression, but not its genetic amplification, is associated with tumor growth and worse survival in esophagogastric junction adenocarcinoma. Oncotarget 7, 19748–19761 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maron, S. B. et al. Targeted therapies for targeted populations: anti-EGFR treatment for EGFR amplified gastroesophageal adenocarcinoma. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-17-1260 (2018).

  43. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  CAS  Google Scholar 

  44. Catenacci, D. V. et al. Durable complete response of metastatic gastric cancer with anti-Met therapy followed by resistance at recurrence. Cancer Discov. 1, 573–579 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8, 2471–2482 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Catenacci, D. V. et al. Absolute quantitation of Met using mass spectrometry for clinical application: assay precision, stability, and correlation with MET gene amplification in FFPE tumor tissue. PloS ONE 9, e100586 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hembrough, T. et al. Application of selected reaction monitoring for multiplex quantification of clinically validated biomarkers in formalin-fixed, paraffin-embedded tumor tissue. J. Mol. Diagn. 15, 454–465 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by funding from Target Cancer Foundation, Sanofi Oncology (A.J.B., G.S.W. and K.J.), Twomey Family Fellowship in Esophageal Cancer Research (G.S.W. and J.Z.), a Research Scholar Grant from the American Cancer Society to A.J.B. and NIH grants P50 CA127003 (A.J.B.). A.J.B., K.-K.W., J.A.D. and A.K.R. were supported by NIH grant P01 CA098101. JSPS Kakenhi grant JP16H06259 and Kobayashi Foundation for Cancer Research supported Y.I. D.C. was supported by the Live Like Katie (LLK) Fund, Sal Ferrara II Fund for PANGEA, NIH K23 CA178203-01A1, University of Chicago Comprehensive Cancer Center (UCCCC) Precision Oncology-Cancer Center Support Grant P30 CA014599.

Author information

Authors and Affiliations

Authors

Contributions

G.S.W., A.J.B. and D.C. conceived the study and wrote and edited the manuscript. G.S.W., J.Z., J.B.L., Z.W., T.L., X.X., J.P., C.Z., A.D. and K.J. participated in the planning, data generation and analysis of in vitro and biochemical experiments. G.S.W., J.Z., J.B.L. and Z.W. performed tumor xenograft experiments. S.E.S., J.M., S.F., P.M., S.A.C. and R.B. performed genomic analysis. D.X., L.H., P.X., E.O’D., R.R., W.-l.L., F.C., T.H., S.S. and C.S. developed and maintained patient-derived cell lines, performed histochemical and mass spectrometric analysis. F.G., A.R., K.N., E.O., M.W., H.B. and Y.I. performed immunohistochemical and retrospective clinical outcomes analysis. A.K.R., K.-K.W. and J.A.D. provided critical input. All authors read and edited the manuscript.

Corresponding authors

Correspondence to Daniel Catenacci or Adam J. Bass.

Ethics declarations

Competing interests

G.S.W. is now an employee of Novartis Institutes for Biomedical Research, Inc.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, G.S., Zhou, J., Liu, J.B. et al. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med 24, 968–977 (2018). https://doi.org/10.1038/s41591-018-0022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0022-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing