Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A lipid site shapes the agonist response of a pentameric ligand-gated ion channel

Abstract

Phospholipids are key components of cellular membranes and are emerging as important functional regulators of different membrane proteins, including pentameric ligand-gated ion channels (pLGICs). Here, we take advantage of the prokaryote channel ELIC (Erwinia ligand-gated ion channel) as a model to understand the determinants of phospholipid interactions in this family of receptors. A high-resolution structure of ELIC in a lipid-bound state reveals a phospholipid site at the lower half of pore-forming transmembrane helices M1 and M4 and at a nearby site for neurosteroids, cholesterol or general anesthetics. This site is shaped by an M4-helix kink and a Trp–Arg–Pro triad that is highly conserved in eukaryote GABAA/C and glycine receptors. A combined approach reveals that M4 is intrinsically flexible and that M4 deletions or disruptions of the lipid-binding site accelerate desensitization in ELIC, suggesting that lipid interactions shape the agonist response. Our data offer a structural context for understanding lipid modulation in pLGICs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-resolution ELIC structure in a lipid-bound state.
Fig. 2: Lipid interactions at a highly conserved Pro kink in the M4 helix.
Fig. 3: Site-directed mutagenesis of the ELIC M4 helix accelerates desensitization.
Fig. 4: M4-helix truncation increases the dynamics of the lower half of the channel pore region.
Fig. 5: Alternative conformation of an unkinked M4 helix forming novel intersubunit interactions.
Fig. 6: Model for lipid modulation of channel desensitization.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files. Atomic coordinates and structure factors have been deposited with the Protein Data Bank under accession numbers 6HJX, 6HJY and 6HK0 for ELIC 7′C+Nb72, ELIC Δ8+Nb72 and ELIC F16′S, respectively.

Code availability

Any code or mathematical algorithm used in this study are available from the corresponding authors upon request.

References

  1. Norimatsu, Y., Hasegawa, K., Shimizu, N. & Toyoshima, C. Protein-phospholipid interplay revealed with crystals of a calcium pump. Nature 545, 193–198 (2017).

    CAS  PubMed  Google Scholar 

  2. Dawaliby, R. et al. Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat. Chem. Biol. 12, 35–39 (2016).

    CAS  PubMed  Google Scholar 

  3. Martens, C. et al. Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat. Struct. Mol. Biol. 23, 744–751 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. She, J. et al. Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature 556, 130–134 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Whorton, M. R. & Mackinnon, R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147, 199–208 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Heidmann, T., Sobel, A., Popot, J. L. & Changeux, J. P. Reconstitution of a functional acetylcholine receptor. Conservation of the conformational and allosteric transitions and recovery of the permeability response; role of lipids. Eur. J. Biochem. 110, 35–55 (1980).

    CAS  PubMed  Google Scholar 

  8. daCosta, C. J. B. et al. Anionic lipids allosterically modulate multiple nicotinic acetylcholine receptor conformational equilibria. J. Biol. Chem. 284, 33841–33849 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. daCosta, C. J. B., Dey, L., Therien, J. P. D. & Baenziger, J. E. A distinct mechanism for activating uncoupled nicotinic acetylcholine receptors. Nat. Chem. Biol. 9, 701–707 (2013).

    CAS  PubMed  Google Scholar 

  10. Barrantes, F. J. Phylogenetic conservation of protein-lipid motifs in pentameric ligand-gated ion channels. Biochim Biophys. Acta 1848, 1796–1805 (2015).

    CAS  PubMed  Google Scholar 

  11. Baenziger, J. E., Hénault, C. M., Therien, J. P. D. & Sun, J. Nicotinic acetylcholine receptor-lipid interactions: mechanistic insight and biological function. Biochim. Biophys. Acta 1848, 1806–1817 (2015).

    CAS  PubMed  Google Scholar 

  12. Cory-Wright, J. et al. Aromatic residues in the fourth transmembrane-spanning helix M4 are important for GABAρ receptor function. ACS Chem. Neurosci. 9, 284–290 (2018).

    CAS  PubMed  Google Scholar 

  13. Haeger, S. et al. An intramembrane aromatic network determines pentameric assembly of Cys-loop receptors. Nat. Struct. Mol. Biol. 17, 90–98 (2010).

    CAS  PubMed  Google Scholar 

  14. Hénault, C. M. et al. The role of the M4 lipid-sensor in the folding, trafficking, and allosteric modulation of nicotinic acetylcholine receptors. Neuropharmacology 96, 157–168 (2015).

    PubMed  Google Scholar 

  15. Carswell, C. L. et al. Role of the fourth transmembrane α helix in the allosteric modulation of pentameric ligand-gated ion channels. Structure 23, 1655–1664 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hénault, C. M., Juranka, P. F. & Baenziger, J. E. The M4 transmembrane α-helix contributes differently to both the maturation and function of two prokaryotic pentameric ligand-gated ion channels. J. Biol. Chem. 290, 25118–25128 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Mitra, A., Bailey, T. D. & Auerbach, A. L. Structural dynamics of the M4 transmembrane segment during acetylcholine receptor gating. Structure 12, 1909–1918 (2004).

    CAS  PubMed  Google Scholar 

  18. Velisetty, P., Chalamalasetti, S. V. & Chakrapani, S. Structural basis for allosteric coupling at the membrane-protein interface in Gloeobacter violaceus ligand-gated ion channel (GLIC). J. Biol. Chem. 289, 3013–3025 (2014).

    CAS  PubMed  Google Scholar 

  19. Basak, S., Schmandt, N., Gicheru, Y. & Chakrapani, S. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel. eLife 6, e23886 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Lasalde, J. A. et al. Tryptophan substitutions at the lipid-exposed transmembrane segment M4 of Torpedo californica acetylcholine receptor govern channel gating. Biochemistry 35, 14139–14148 (1996).

    CAS  PubMed  Google Scholar 

  21. Bouzat, C., Roccamo, A. M., Garbus, I. & Barrantes, F. J. Mutations at lipid-exposed residues of the acetylcholine receptor affect its gating kinetics. Mol. Pharm. 54, 146–153 (1998).

    CAS  Google Scholar 

  22. Domville, J. A. & Baenziger, J. E. An allosteric link connecting the lipid-protein interface to the gating of the nicotinic acetylcholine receptor. Sci. Rep. 8, 3898 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Carswell, C. L., Sun, J. & Baenziger, J. E. Intramembrane aromatic interactions influence the lipid sensitivities of pentameric ligand-gated ion channels. J. Biol. Chem. 290, 2496–2507 (2015).

    CAS  PubMed  Google Scholar 

  24. Labriola, J. M. et al. Structural sensitivity of a prokaryotic pentameric ligand-gated ion channel to its membrane environment. J. Biol. Chem. 288, 11294–11303 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bocquet, N. et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114 (2009).

    CAS  PubMed  Google Scholar 

  26. Nury, H. et al. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469, 428–431 (2011).

    CAS  PubMed  Google Scholar 

  27. Laverty, D. et al. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Nat. Struct. Mol. Biol. 24, 977–985 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, Q. et al. Structural basis of neurosteroid anesthetic action on GABAA receptors. Nat. Commun. 9, 3972 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Miller, P. S. et al. Structural basis for GABAA receptor potentiation by neurosteroids. Nat. Struct. Mol. Biol. 24, 986–992 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu, S. et al. Structure of a human synaptic GABAA receptor. Nature 559, 67–72 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Laverty, D. et al. Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature 565, 516–520 (2019).

    CAS  PubMed  Google Scholar 

  32. Manglik, A., Kobilka, B. K. & Steyaert, J. Nanobodies to study G protein-coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol. 57, 19–37 (2017).

    CAS  PubMed  Google Scholar 

  33. Hilf, R. J. C. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008).

    CAS  PubMed  Google Scholar 

  34. Du, J., Lü, W., Wu, S., Cheng, Y. & Gouaux, E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526, 224–229 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, X. et al. Crystal structures of human glycine receptor α3 bound to a novel class of analgesic potentiators. Nat. Struct. Mol. Biol. 24, 108–113 (2017).

    PubMed  Google Scholar 

  36. Miller, P. S. & Aricescu, A. R. Crystal structure of a human GABAA receptor. Nature 512, 270–275 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Phulera, S. et al. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. eLife 7, 531 (2018).

    Google Scholar 

  38. Masiulis, S. et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature 565, 454–459 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hibbs, R. E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474, 54–60 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Althoff, T., Hibbs, R. E., Banerjee, S. & Gouaux, E. X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512, 333–337 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Morales-Perez, C. L., Noviello, C. M. & Hibbs, R. E. X-ray structure of the human α4β2 nicotinic receptor. Nature 538, 411–415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Walsh, R. M. et al. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature 557, 261–265 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gielen, M. & Corringer, P.-J. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. J. Physiol. 596, 1873–1902 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zimmermann, I. & Dutzler, R. Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC. PLoS Biol. 9, e1001101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gonzalez-Gutierrez, G. et al. Mutations that stabilize the open state of the Erwinia chrisanthemi ligand-gated ion channel fail to change the conformation of the pore domain in crystals. Proc. Natl Acad. Sci. USA 109, 6331–6336 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chatterjee, A., Guo, J., Lee, H. S. & Schultz, P. G. A genetically encoded fluorescent probe in mammalian cells. J. Am. Chem. Soc. 135, 12540–12543 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Spurny, R. et al. Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines. Proc. Natl Acad. Sci. USA 109, E3028–E3034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nys, M. et al. Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine. Proc. Natl Acad. Sci. USA 113, E6696–E6703 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pardon, E. et al. A general protocol for the generation of nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Smart, O. S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  56. Cuello, L. G., Cortes, D. M. & Perozo, E. The gating cycle of a K+ channel at atomic resolution. eLife 6, 213 (2017).

    Google Scholar 

  57. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    CAS  PubMed  Google Scholar 

  58. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B. 114, 7830–7843 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank INSTRUCT-ERIC, part of the European Strategy Forum on Research Infrastructures and the Research Foundation-Flanders (FWO) for funding nanobody discovery (J.S.). We thank N. Buys and K. Willibal for technical assistance during nanobody discovery. SBO/IWT-project 1200261 and FWO-project G.0762.13 were awarded to J.S. and C.U. Additional support was from KU Leuven OT/13/095, C32/16/035 and C14/17/093 to C.U. We thank beamline staff at the Swiss Light Source and ESRF. J.E.B. was supported by a grant (113312) from the Natural Sciences and Engineering Research Council of Canada. G.B. was supported by research grant NIH P01GM55876-14A1. L.G.C. was supported by research grant NIH 2R01GM097159. Computational resources were provided by the National Science Foundation XSEDE program through allocation NSF-MCB110149 as well as the Rutgers Discovery Informatics Institute (G.B.).

Author information

Authors and Affiliations

Authors

Contributions

C.M.H. designed, performed and analyzed Xenopus electrophysiological recordings. C.G. performed structure building and refinement. R.S. designed and performed protein purification, crystallization, X-ray data collection and structure determination, building and refinement. M.B. designed and performed protein purification, crystallization, cysteine crosslinking, mutagenesis, RNA transcription and analyzed data. A.E.-M. designed, performed and analyzed VCF recordings. J.L. supervised voltage clamp recordings, data analysis and acquired funding. D.B. designed, performed and analyzed HiClamp recordings. E.P. designed, performed and analyzed all aspects of nanobody production. G.E. performed structure validation and data analysis. K.W. contributed to all aspects of MD simulations. B.W.E. contributed to lipid vesicle recordings. L.G.C. designed, performed and analyzed lipid vesicle recordings and contributed funding. G.B. designed, performed, analyzed MD simulations and acquired funding. H.N. performed X-ray structure building and refinement. J.S. contributed to all aspects of nanobody production and acquired funding. J.E.B. supervised the project, performed experimental design, data analysis and acquired funding. C.U. supervised the project, performed experimental design, contributed to all aspects of X-ray crystallography and acquired funding. J.E.B. and C.U. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to John E. Baenziger or Chris Ulens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Tables 1–5 and Supplementary Figures 1–11.

Reporting Summary

Supplementary Video 1

The video is a morph illustrating the conformational change of M4 in ELIC (side view). The structure in red represents the alternate conformation of M4.

Supplementary Video 2

The video is a morph illustrating the conformational change of M4 in ELIC for the transmembrane domain only (side view, left; top view, right). The structure in red represents the alternate conformation of M4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hénault, C.M., Govaerts, C., Spurny, R. et al. A lipid site shapes the agonist response of a pentameric ligand-gated ion channel. Nat Chem Biol 15, 1156–1164 (2019). https://doi.org/10.1038/s41589-019-0369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0369-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing