Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous directed evolution of proteins with improved soluble expression

Abstract

We report the development of soluble expression phage-assisted continuous evolution (SE-PACE), a system for rapidly evolving proteins with increased soluble expression. Through use of a PACE-compatible AND gate that uses a split-intein pIII, SE-PACE enables two simultaneous positive selections to evolve proteins with improved expression while maintaining their desired activities. In as little as three days, SE-PACE evolved several antibody fragments with >5-fold improvement in expression yield while retaining binding activity. We also developed an activity-independent form of SE-PACE to correct folding-defective variants of maltose-binding protein (MBP) and to evolve variants of the eukaryotic cytidine deaminase APOBEC1 with improved expression properties. These evolved APOBEC1 variants were found to improve the expression and apparent activity of Cas9-derived base editors when used in place of the wild-type cytidine deaminase. Together, these results suggest that SE-PACE can be applied to a wide variety of proteins to rapidly improve their soluble expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of a PACE selection for improved soluble protein expression.
Fig. 2: Validation of the soluble protein expression PACE selection.
Fig. 3: Split-intein pIII as an AND gate for bridging two positive selections in PACE.
Fig. 4: Soluble expression PACE with simultaneous selection for expression and binding activity.
Fig. 5: Activity-independent selection for soluble proteins in PACE.

Similar content being viewed by others

References

  1. Braun, P. & LaBaer, J. High throughput protein production for functional proteomics. Trends Biotechnol. 21, 383–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Socha, R. D. & Tokuriki, N. Modulating protein stability - directed evolution strategies for improved protein function. FEBS J. 280, 5582–5595 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Terpe, K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72, 211–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Esposito, D. & Chatterjee, D. K. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol. 17, 353–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Giver, L., Gershenson, A., Freskgard, P.-O. & Arnold, F. H. Directed evolution of a thermostable esterase. Proc. Natl Acad. Sci. USA 95, 12809–12813 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cherry, J. R. et al. Directed evolution of a fungal peroxidase. Nat. Biotechnol. 17, 379–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Sieber, V., Plückthun, A. & Schmid, F. X. Selecting proteins with improved stability by a phage-based method. Nat. Biotechnol. 16, 955–960 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Khersonsky, O. et al. Directed evolution of serum paraoxonase PON3 by family shuffling and ancestor/consensus mutagenesis, and its biochemical characterization. Biochemistry 48, 6644–6654 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Waldo, G. S., Standish, B. M., Berendzen, J. & Terwilliger, T. C. Rapid protein-folding assay using green fluorescent protein. Nat. Biotechnol. 17, 691–695 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Waldo, G. S. Genetic screens and directed evolution for protein solubility. Curr. Opin. Chem. Biol. 7, 33–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Yuan, L., Kurek, I., English, J. & Keenan, R. Laboratory-directed protein evolution. Microbiol. Mol. Biol. Rev. 69, 373–392 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rakonjac, J. & Model, P. Roles of pIII in filamentous phage assembly. J. Mol. Biol. 282, 25–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 6, 8425 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat. Chem. Biol. 10, 216–222 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dickinson, B. C., Leconte, A. M., Allen, B., Esvelt, K. M. & Liu, D. R. Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc. Natl Acad. Sci. USA 110, 9007–9012 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dickinson, B. C., Packer, M. S., Badran, A. H. & Liu, D. R. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat. Commun. 5, 5352 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Packer, M. S., Rees, H. A. & Liu, D. R. Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat. Commun. 8, 956 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hubbard, B. P. et al. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat. Methods 12, 939–942 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Badran, A. H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533, 58–63 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bryson, D. I. et al. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat. Chem. Biol. 13, 1253–1260 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Grodberg, J. & Dunn, J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 170, 1245–1253 (1988).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Shis, D. L. & Bennett, M. R. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proc. Natl Acad. Sci. USA 110, 5028–5033 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Betton, J.-M. & Hofnung, M. Folding of a mutant maltose-binding protein of Escherichia coli which forms inclusion bodies. J. Biol. Chem. 271, 8046–8052 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Chun, S.-Y., Strobel, S., Bassford, P. Jr & Randall, L. L. Folding of maltose-binding protein. Evidence for the identity of the rate-determining step in vivo and in vitro. J. Biol. Chem. 268, 20855–20862 (1993).

    CAS  PubMed  Google Scholar 

  27. Roodveldt, C., Aharoni, A. & Tawfik, D. S. Directed evolution of proteins for heterologous expression and stability. Curr. Opin. Struct. Biol. 15, 50–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Schaerli, Y., Gili, M. & Isalan, M. A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Res. 42, 12322–12328 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rakonjac, J. Filamentous bacteriophages: biology and applications. in Encyclopedia of Life Sciences (John Wiley & Sons, Ltd., Chichester, UK (2012)).

  30. Shah, N. H., Dann, G. P., Vila-Perelló, M., Liu, Z. & Muir, T. W. Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J. Am. Chem. Soc. 134, 11338–11341 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zettler, J., Schütz, V. & Mootz, H. D. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. 583, 909–914 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Brissette, J. L., Weiner, L., Ripmaster, T. L. & Model, P. Characterization and sequence of the Escherichia coli stress-induced psp operon. J. Mol. Biol. 220, 35–48 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Wojcik, J. et al. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Nat. Struct. Mol. Biol. 17, 519–527 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Holliger, P. & Hudson, P. J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23, 1126–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Wörn, A. & Plückthun, A. Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305, 989–1010 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H. R. & Plückthun, A. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc. Natl Acad. Sci. USA 95, 14130–14135 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. der Maur, A. A. et al. Direct in vivo screening of intrabody libraries constructed on a highly stable single-chain framework. J. Biol. Chem. 277, 45075–45085 (2002).

    Article  CAS  Google Scholar 

  38. Waraho-Zhmayev, D., Meksiriporn, B., Portnoff, A. D. & DeLisa, M. P. Optimizing recombinant antibodies for intracellular function using hitchhiker-mediated survival selection. Protein Eng. Des. Sel. 27, 351–358 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lecerf, J.-M. et al. Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington’s disease. Proc. Natl Acad. Sci. USA 98, 4764–4769 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gilbreth, R. N., Esaki, K., Koide, A., Sidhu, S. S. & Koide, S. A dominant conformational role for amino acid diversity in minimalist protein-protein interfaces. J. Mol. Biol. 381, 407–418 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Harris, R. S., Petersen-Mahrt, S. K. & Neuberger, M. S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Seo, M. J. et al. Engineering antibody fragments to fold in the absence of disulfide bonds. Protein Sci. 18, 259–267 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Jespers, L., Schon, O., Famm, K. & Winter, G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat. Biotechnol. 22, 1161–1165 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US NIH NIBIB R01EB022376, NIGMS R35 GM118062, NHGRI RM1 HG009490, Monsanto, and the Howard Hughes Medical Institute. T.W. is a Ruth L. Kirchstein National Research Service Awards Postdoctoral Fellow (F32 GM119228).

Author information

Authors and Affiliations

Authors

Contributions

T.W. designed the research, performed the experiments, analyzed data, and wrote the manuscript. A.H.B. designed the research, analyzed data, and wrote the manuscript. T.P.H. performed and analyzed the mammalian cell base editing experiments. D.R.L. designed and supervised the research and wrote the manuscript.

Corresponding author

Correspondence to David R. Liu.

Ethics declarations

Competing interests

The authors have filed a provisional patent application on the PACE system and related improvements.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6, Supplementary Figures 1–19, Supplementary Note 1

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Badran, A.H., Huang, T.P. et al. Continuous directed evolution of proteins with improved soluble expression. Nat Chem Biol 14, 972–980 (2018). https://doi.org/10.1038/s41589-018-0121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0121-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing