Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases

Abstract

Apoptosis is crucial for the normal development of the nervous system, whereas neurons in the adult CNS are relatively resistant to this form of cell death. However, under pathological conditions, upregulation of death receptor family ligands, such as tumour necrosis factor (TNF), can sensitize cells in the CNS to apoptosis and a form of regulated necrotic cell death known as necroptosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL). Necroptosis promotes further cell death and neuroinflammation in the pathogenesis of several neurodegenerative diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Parkinson disease and Alzheimer disease. In this Review, we outline the evidence implicating necroptosis in these neurological diseases and suggest that targeting RIPK1 might help to inhibit multiple cell death pathways and ameliorate neuroinflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TNF signalling-mediated apoptosis and necroptosis.
Fig. 2: Post-translational modifications regulate the activation of RIPK1.
Fig. 3: Execution of necroptosis.
Fig. 4: Bimodal deleterious RIPK1 activation in neurological disease.

Similar content being viewed by others

References

  1. Yuan, J. & Yankner, B. A. Apoptosis in the nervous system. Nature 407, 802–809 (2000).

    PubMed  CAS  Google Scholar 

  2. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005). This paper provides the first definition of necroptosis and insights into the functional role of necroptosis in acute neurological injuries.

    PubMed  CAS  Google Scholar 

  3. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008). This paper demonstrates RIPK1 kinase activity as the target of Nec-1 and the role of RIPK1 as a key mediator of necroptosis.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Ofengeim, D. & Yuan, J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat. Rev. Mol. Cell Biol. 14, 727–736 (2013).

    PubMed  CAS  Google Scholar 

  5. Weinlich, R., Oberst, A., Beere, H. M. & Green, D. R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127–136 (2017).

    PubMed  CAS  Google Scholar 

  6. Shan, B., Pan, H., Najafov, A. & Yuan, J. Necroptosis in development and diseases. Genes Dev. 32, 327–340 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Mullard, A. Microglia-targeted candidates push the Alzheimer drug envelope. Nat. Rev. Drug Discov. 17, 303–305 (2018).

    PubMed  CAS  Google Scholar 

  8. Weisel, K. et al. Randomized clinical study of safety, pharmacokinetics, and pharmacodynamics of RIPK1 inhibitor GSK2982772 in healthy volunteers. Pharmacol. Res. Perspect. 5, e00365 (2017).

    PubMed Central  Google Scholar 

  9. Yuan, J. & Horvitz, H. R. A first insight into the molecular mechanisms of apoptosis. Cell 116 (Suppl. 2), S53–S56 (2004).

    PubMed  CAS  Google Scholar 

  10. Conradt, B., Wu, Y. C. & Xue, D. Programmed cell death during Caenorhabditis elegans development. Genetics 203, 1533–1562 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993).

    CAS  PubMed  Google Scholar 

  12. Gagliardini, V. et al. Prevention of vertebrate neuronal death by the crmA gene. Science 263, 826–828 (1994).

    PubMed  CAS  Google Scholar 

  13. Degterev, A., Boyce, M. & Yuan, J. A decade of caspases. Oncogene 22, 8543–8567 (2003).

    PubMed  CAS  Google Scholar 

  14. Hyman, B. T. & Yuan, J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat. Rev. Neurosci. 13, 395–406 (2012).

    PubMed  CAS  Google Scholar 

  15. Schafer, Z. T. & Kornbluth, S. The apoptosome: physiological, developmental, and pathological modes of regulation. Dev. Cell 10, 549–561 (2006).

    PubMed  CAS  Google Scholar 

  16. Strasser, A., Jost, P. J. & Nagata, S. The many roles of FAS receptor signaling in the immune system. Immunity 30, 180–192 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Tummers, B. & Green, D. R. Caspase-8: regulating life and death. Immunol. Rev. 277, 76–89 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Kumar, S., van Raam, B. J., Salvesen, G. S. & Cieplak, P. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates. PLOS ONE 9, e110539 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Kalb, R. The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci. 28, 5–11 (2005).

    PubMed  CAS  Google Scholar 

  20. Putcha, G. V., Deshmukh, M. & Johnson, E. M. Jr. Inhibition of apoptotic signaling cascades causes loss of trophic factor dependence during neuronal maturation. J. Cell Biol. 149, 1011–1018 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    PubMed  CAS  Google Scholar 

  22. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337 (1998).

    PubMed  CAS  Google Scholar 

  23. Krajewska, M. et al. Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ. 9, 145–157 (2002).

    PubMed  CAS  Google Scholar 

  24. Troy, C. M., Akpan, N. & Jean, Y. Y. Regulation of caspases in the nervous system implications for functions in health and disease. Prog. Mol. Biol. Transl Sci. 99, 265–305 (2011).

    PubMed  CAS  Google Scholar 

  25. Kole, A. J., Annis, R. P. & Deshmukh, M. Mature neurons: equipped for survival. Cell Death Dis. 4, e689 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Sarosiek, K. A. et al. Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell 31, 142–156 (2017).

    CAS  PubMed  Google Scholar 

  27. Kole, A. J., Swahari, V., Hammond, S. M. & Deshmukh, M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev. 25, 125–130 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Wright, K. M., Smith, M. I., Farrag, L. & Deshmukh, M. Chromatin modification of Apaf-1 restricts the apoptotic pathway in mature neurons. J. Cell Biol. 179, 825–832 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Perrelet, D. et al. Motoneuron resistance to apoptotic cell death in vivo correlates with the ratio between X-linked inhibitor of apoptosis proteins (XIAPs) and its inhibitor, XIAP-associated factor 1. J. Neurosci. 24, 3777–3785 (2004).

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Tarkowski, E., Blennow, K., Wallin, A. & Tarkowski, A. Intracerebral production of tumor necrosis factor-α, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J. Clin. Immunol. 19, 223–230 (1999).

    PubMed  CAS  Google Scholar 

  31. Tarkowski, E., Andreasen, N., Tarkowski, A. & Blennow, K. Intrathecal inflammation precedes development of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 74, 1200–1205 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Lu, C. H. et al. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 3, e244 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Tateishi, T. et al. CSF chemokine alterations related to the clinical course of amyotrophic lateral sclerosis. J. Neuroimmunol. 222, 76–81 (2010).

    PubMed  CAS  Google Scholar 

  34. Nagatsu, T., Mogi, M., Ichinose, H. & Togari, A. Cytokines in Parkinson’s disease. J. Neural Transm. Suppl. 58, 143–151 (2000).

    Google Scholar 

  35. Sharief, M. K. & Hentges, R. Association between tumor necrosis factor-α and disease progression in patients with multiple sclerosis. N. Engl. J. Med. 325, 467–472 (1991).

    PubMed  CAS  Google Scholar 

  36. Habbas, S. et al. Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 163, 1730–1741 (2015).

    PubMed  CAS  Google Scholar 

  37. Walczak, H. Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb. Perspect. Biol. 5, a008698 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Martin-Villalba, A. et al. Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke. Cell Death Differ. 8, 679–686 (2001).

    PubMed  CAS  Google Scholar 

  39. Hovelmeyer, N. et al. Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J. Immunol. 175, 5875–5884 (2005).

    PubMed  Google Scholar 

  40. Nitsch, R. et al. Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet 356, 827–828 (2000).

    PubMed  CAS  Google Scholar 

  41. Uberti, D. et al. TRAIL is expressed in the brain cells of Alzheimer’s disease patients. Neuroreport 15, 579–581 (2004).

    PubMed  CAS  Google Scholar 

  42. Cannella, B., Gaupp, S., Omari, K. M. & Raine, C. S. Multiple sclerosis: death receptor expression and oligodendrocyte apoptosis in established lesions. J. Neuroimmunol. 188, 128–137 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Christofferson, D. E. et al. A novel role for RIP1 kinase in mediating TNFα production. Cell Death Dis. 3, e320 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Jouan-Lanhouet, S. et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 19, 2003–2014 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Siegmund, D., Lang, I. & Wajant, H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J. 284, 1131–1159 (2017).

    PubMed  CAS  Google Scholar 

  46. Probert, L. TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience 302, 2–22 (2015).

    PubMed  CAS  Google Scholar 

  47. Srinivasan, K. et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat. Commun. 7, 11295 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    PubMed  CAS  Google Scholar 

  50. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    CAS  PubMed  Google Scholar 

  51. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    PubMed  CAS  Google Scholar 

  53. Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

    CAS  PubMed  Google Scholar 

  54. Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7, 971–981 (2014).

    PubMed  CAS  Google Scholar 

  55. Amin, P. et al. Regulation of a distinct activated RIPK1 intermediate bridging complex I and complex II in TNFα-mediated apoptosis. Proc. Natl Acad. Sci. USA 115, E5944–E5953 (2018).

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    PubMed  CAS  Google Scholar 

  57. Chen, Z. J. Ubiquitination in signaling to and activation of IKK. Immunol. Rev. 246, 95–106 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Geng, J. et al. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat. Commun. 8, 359 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. Dondelinger, Y. et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60, 63–76 (2015).

    PubMed  CAS  Google Scholar 

  60. Jaco, I. et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol. Cell 66, 698–710 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Menon, M. B. et al. p38MAPK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat. Cell Biol. 19, 1248–1259 (2017).

    PubMed  CAS  Google Scholar 

  62. Elliott, P. R. et al. SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling. Mol. Cell 63, 990–1005 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Kupka, S. et al. SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes. Cell Rep. 16, 2271–2280 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Schlicher, L. et al. SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death. EMBO Rep. 17, 1485–1497 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Wei, R. et al. SPATA2 regulates the activation of RIPK1 by modulating linear ubiquitination. Genes Dev. 31, 1162–1176 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    PubMed  CAS  Google Scholar 

  67. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    PubMed  CAS  Google Scholar 

  68. Draber, P. et al. LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep. 13, 2258–2272 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323 (2008).This paper describes a genome-wide siRNA screen for genes that regulate necroptosis.

  70. Berger, S. B. et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014).

    PubMed  CAS  Google Scholar 

  71. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    PubMed  CAS  Google Scholar 

  72. Hadian, K. et al. NF-κB essential modulator (NEMO) interaction with linear and Lys-63 ubiquitin chains contributes to NF-κB activation. J. Biol. Chem. 286, 26107–26117 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Nanda, S. K. et al. Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J. Exp. Med. 208, 1215–1228 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Nakazawa, S. et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat. Commun. 7, 12547 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Ito, Y. et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353, 603–608 (2016). This paper provides the first genetic connection between ALS and necroptosis.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Dziedzic, S. A. et al. ABIN-1 regulates RIPK1 activation by linking Met1 ubiquitylation with Lys63 deubiquitylation in TNF–RSC. Nat. Cell Biol. 20, 58–68 (2018). This paper describes the role of ABIN1, a ubiquitin-binding protein implicated in ALS and schizophrenia, in inhibiting the activation of RIPK1 and necroptosis.

    Google Scholar 

  77. Li, F. et al. Structural insights into the ubiquitin recognition by OPTN (optineurin) and its regulation by TBK1-mediated phosphorylation. Autophagy 14, 66–79 (2018).

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Vlantis, K. et al. NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-κB-dependent and -independent functions. Immunity 44, 553–567 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Xu, D. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 174, 1477–1491 (2018). This paper reveals the molecular insights by which the reduced levels of TAK1, a key suppressor of RIPK1, in ageing of human brains cooperates with the haploinsufficiency of TBK1 to promote the onset of ALS.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Harhaj, E. W. & Dixit, V. M. Regulation of NF-κB by deubiquitinases. Immunol. Rev. 246, 107–124 (2012).

    PubMed  PubMed Central  Google Scholar 

  81. Vucic, D., Dixit, V. M. & Wertz, I. E. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat. Rev. Mol. Cell Biol. 12, 439–452 (2011).

    PubMed  CAS  Google Scholar 

  82. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    PubMed  CAS  Google Scholar 

  83. Bosanac, I. et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol. Cell 40, 548–557 (2010).

    PubMed  CAS  Google Scholar 

  84. Shembade, N., Ma, A. & Harhaj, E. W. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–1139 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. McLaughlin, R. L. et al. Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nat. Commun. 8, 14774 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Meng, H. et al. Death-domain dimerization-mediated activation of RIPK1 controls necroptosis and RIPK1-dependent apoptosis. Proc. Natl Acad. Sci. USA 115, E2001–E2009 (2018).

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Varfolomeev, E. E. et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    PubMed  CAS  Google Scholar 

  89. Yeh, W. C. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Google Scholar 

  90. Dillon, C. P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–1202 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Rickard, J. A. et al. RIPK1 regulates RIPK3–MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014).

    PubMed  CAS  Google Scholar 

  92. Ofengeim, D. et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 10, 1836–1849 (2015). This paper provides the first insight into the involvement and mechanism of RIPK1-mediated necroptosis in MS and the role of necroptosis in mediating oligodendrocyte cell death.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K. & Tschopp, J. NF-κB signals induce the expression of c-FLIP. Mol. Cell. Biol. 21, 5299–5305 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Rehker, J. et al. Caspase-8, association with Alzheimer’s disease and functional analysis of rare variants. PLOS ONE 12, e0185777 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Gonzalvez, F. et al. TRAF2 sets a threshold for extrinsic apoptosis by tagging caspase-8 with a ubiquitin shutoff timer. Mol. Cell 48, 888–899 (2012).

    PubMed  CAS  Google Scholar 

  96. Conforti, L., Gilley, J. & Coleman, M. P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 15, 394–409 (2014).

    PubMed  CAS  Google Scholar 

  97. Zhou, T. et al. Implications of white matter damage in amyotrophic lateral sclerosis (review). Mol. Med. Rep. 16, 4379–4392 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Adalbert, R. & Coleman, M. P. Review: axon pathology in age-related neurodegenerative disorders. Neuropathol. Appl. Neurobiol. 39, 90–108 (2013).

    PubMed  CAS  Google Scholar 

  99. Raff, M. C., Whitmore, A. V. & Finn, J. T. Axonal self-destruction and neurodegeneration. Science 296, 868–871 (2002).

    PubMed  CAS  Google Scholar 

  100. Wang, J. T., Medress, Z. A. & Barres, B. A. Axon degeneration: molecular mechanisms of a self-destruction pathway. J. Cell Biol. 196, 7–18 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Waller, A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Phil. Trans. R. Soc. 140, 423–429 (1850).

    Google Scholar 

  102. Vargas, M. E. & Barres, B. A. Why is Wallerian degeneration in the CNS so slow? Annu. Rev. Neurosci. 30, 153–179 (2007).

    PubMed  CAS  Google Scholar 

  103. Trapp, B. D. & Nave, K. A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 31, 247–269 (2008).

    PubMed  CAS  Google Scholar 

  104. Butts, B. D., Houde, C. & Mehmet, H. Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease. Cell Death Differ. 15, 1178–1186 (2008).

    PubMed  CAS  Google Scholar 

  105. Yoshikawa, M. et al. Discovery of 7-oxo-2,4,5,7-tetrahydro-6 H-pyrazolo[3,4- c]pyridine derivatives as potent, orally available, and brain-penetrating receptor interacting protein 1 (RIP1) kinase inhibitors: analysis of structure–kinetic relationships. J. Med. Chem. 61, 2384–2409 (2018).

    PubMed  CAS  Google Scholar 

  106. Dadon-Nachum, M., Melamed, E. & Offen, D. The “dying-back” phenomenon of motor neurons in ALS. J. Mol. Neurosci. 43, 470–477 (2011).

    PubMed  CAS  Google Scholar 

  107. Fischer, L. R. & Glass, J. D. Axonal degeneration in motor neuron disease. Neurodegener. Dis 4, 431–442 (2007).

    PubMed  Google Scholar 

  108. Sasaki, S. & Maruyama, S. Increase in diameter of the axonal initial segment is an early change in amyotrophic lateral sclerosis. J. Neurol. Sci. 110, 114–120 (1992).

    PubMed  CAS  Google Scholar 

  109. Kang, S. H. et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 16, 571–579 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Re, D. B. et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81, 1001–1008 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Exner, N., Lutz, A. K., Haass, C. & Winklhofer, K. F. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038–3062 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Iannielli, A. et al. Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell Rep. 22, 2066–2079 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Wu, J. R. et al. Necrostatin-1 protection of dopaminergic neurons. Neural Regen Res. 10, 1120–1124 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Vitner, E. B. et al. RIPK3 as a potential therapeutic target for Gaucher’s disease. Nat. Med. 20, 204–208 (2014). This paper demonstrates the role of RIPK3 and necroptosis in GD.

  115. Ransohoff, R. M. How neuroinflammation contributes to neurodegeneration. Science 353, 777–783 (2016).

    PubMed  CAS  Google Scholar 

  116. Chen, H., Kankel, M. W., Su, S. C., Han, S. W. S. & Ofengeim, D. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD. Cell Death Differ. 25, 646–660 (2018).

    CAS  PubMed Central  Google Scholar 

  117. Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153, 707–720 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Efthymiou, A. G. & Goate, A. M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol. Neurodegener. 12, 43 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Zhu, K. et al. Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression. Cell Death Dis. 9, 500 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Kigerl, K. A. et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 13435–13444 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Mandrekar-Colucci, S. & Landreth, G. E. Microglia and inflammation in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 9, 156–167 (2010).

    PubMed  CAS  Google Scholar 

  122. Collins, J. S. et al. Association of a haplotype for tumor necrosis factor in siblings with late-onset Alzheimer disease: the NIMH Alzheimer Disease Genetics Initiative. Am. J. Med. Genet. 96, 823–830 (2000).

    PubMed  CAS  Google Scholar 

  123. He, P. et al. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice. J. Cell Biol. 178, 829–841 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Caccamo, A. et al. Necroptosis activation in Alzheimer’s disease. Nat. Neurosci. 20, 1236–1246 (2017). This paper provides human pathological evidence for the role of necroptosis in AD.

    PubMed  CAS  Google Scholar 

  125. Ofengeim, D. et al. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, E8788–E8797 (2017). This paper demonstrates the role of RIPK1 in mediating the microglial inflammatory response in AD.

  126. Degterev, A., Maki, J. L. & Yuan, J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ. 20, 366 (2013).

    PubMed  CAS  Google Scholar 

  127. Yang, S. H. et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol. Med. 9, 61–77 (2017).

    PubMed  CAS  Google Scholar 

  128. Papassotiropoulos, A. et al. Cholesterol 25-hydroxylase on chromosome 10q is a susceptibility gene for sporadic Alzheimer’s disease. Neurodegener. Dis 2, 233–241 (2005).

    PubMed  CAS  Google Scholar 

  129. Jang, J. et al. 25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nat. Commun. 7, 13129 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012). This paper provides the structural evidence for the amyloid conformation of the necrosome in necroptosis.

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Abdelhak, A., Weber, M. S. & Tumani, H. Primary progressive multiple sclerosis: putting together the puzzle. Front. Neurol. 8, 234 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Winblad, B. et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 15, 455–532 (2016).

    PubMed  Google Scholar 

  133. Deepa, S. S., Unnikrishnan, A., Matyi, S., Hadad, N. & Richardson, A. Necroptosis increases with age and is reduced by dietary restriction. Aging Cell 17, e12770 (2018).

    PubMed Central  PubMed  Google Scholar 

  134. Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Freischmidt, A., Muller, K., Ludolph, A. C., Weishaupt, J. H. & Andersen, P. M. Association of mutations in TBK1 with sporadic and familial amyotrophic lateral sclerosis and frontotemporal dementia. JAMA Neurol. 74, 110–113 (2017).

    PubMed  Google Scholar 

  136. Mizushima, N. Autophagy in protein and organelle turnover. Cold Spring Harb. Symp. Quant. Biol. 76, 397–402 (2011).

    PubMed  CAS  Google Scholar 

  137. Lipinski, M. M. et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 107, 14164–14169 (2010).

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).

    PubMed  CAS  Google Scholar 

  139. Saez, I. & Vilchez, D. The mechanistic links between proteasome activity, aging and age-related diseases. Curr. Genom. 15, 38–51 (2014).

    CAS  Google Scholar 

  140. Chiu, I. M. et al. Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc. Natl Acad. Sci. USA 106, 20960–20965 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Nuvolone, M. et al. Cystatin F is a biomarker of prion pathogenesis in mice. PLOS ONE 12, e0171923 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Ma, J. et al. Microglial cystatin F expression is a sensitive indicator for ongoing demyelination with concurrent remyelination. J. Neurosci. Res. 89, 639–649 (2011).

    PubMed  CAS  Google Scholar 

  143. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

    PubMed  CAS  Google Scholar 

  144. Schetters, S. T. T., Gomez-Nicola, D., Garcia-Vallejo, J. J. & Van Kooyk, Y. Neuroinflammation: microglia and T cells get ready to tango. Front. Immunol. 8, 1905 (2017).

    PubMed  Google Scholar 

  145. Gate, D., Rezai-Zadeh, K., Jodry, D., Rentsendorj, A. & Town, T. Macrophages in Alzheimer’s disease: the blood-borne identity. J. Neural Transm. 117, 961–970 (2010).

    CAS  Google Scholar 

  146. Weinlich, R. et al. Protective roles for caspase-8 and cFLIP in adult homeostasis. Cell Rep. 5, 340–348 (2013).

    PubMed  CAS  Google Scholar 

  147. Rajput, A. et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity 34, 340–351 (2011).

    PubMed  CAS  Google Scholar 

  148. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–94 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Cuchet-Lourenco, D. et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361, 810–813 (2018).

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Harris, P. A. et al. Discovery of small molecule RIP1 kinase inhibitors for the treatment of pathologies associated with necroptosis. ACS Med. Chem. Lett. 4, 1238–1243 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Polykratis, A. et al. Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193, 1539–1543 (2014).

    PubMed  CAS  Google Scholar 

  152. Shutinoski, B. et al. K45A mutation of RIPK1 results in poor necroptosis and cytokine signaling in macrophages, which impacts inflammatory responses in vivo. Cell Death Differ. 23, 1628–1637 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Duprez, L. et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908–918 (2011).

    CAS  PubMed  Google Scholar 

  154. Liu, Y. et al. RIP1 kinase activity-dependent roles in embryonic development of Fadd-deficient mice. Cell Death Differ. 24, 1459–1469 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Najjar, M. et al. Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Rep. 10, 1850–1860 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  156. Xie, T. et al. Structural basis of RIP1 inhibition by necrostatins. Structure 21, 493–499 (2013).

    PubMed  CAS  Google Scholar 

  157. Harris, P. A. et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J. Med. Chem. 60, 1247–1261 (2017).

    PubMed  CAS  Google Scholar 

  158. Harris, P. A. et al. DNA-encoded library screening identifies benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting protein 1 kinase inhibitors. J. Med. Chem. 59, 2163–2178 (2016).

    PubMed  CAS  Google Scholar 

  159. Chen, Y. et al. Necrostatin-1 improves long-term functional recovery through protecting oligodendrocyte precursor cells after transient focal cerebral ischemia in mice. Neuroscience 371, 229–241 (2018).

    PubMed  CAS  Google Scholar 

  160. Zhang, S. et al. Necrostatin-1 attenuates inflammatory response and improves cognitive function in chronic ischemic stroke mice. Medicines 3, E16 (2016).

    Google Scholar 

  161. King, M. D., Whitaker-Lea, W. A., Campbell, J. M., Alleyne, C. H. Jr & Dhandapani, K. M. Necrostatin-1 reduces neurovascular injury after intracerebral hemorrhage. Int. J. Cell Biol. 2014, 495817 (2014).

    PubMed  PubMed Central  Google Scholar 

  162. You, Z. et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J. Cereb. Blood Flow Metab. 28, 1564–1573 (2008).

    PubMed  CAS  Google Scholar 

  163. Wang, Y. et al. Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience 266, 91–101 (2014).

    PubMed  CAS  Google Scholar 

  164. Do, Y. J. et al. A novel RIPK1 inhibitor that prevents retinal degeneration in a rat glaucoma model. Exp. Cell Res. 359, 30–38 (2017).

    PubMed  CAS  Google Scholar 

  165. Rosenbaum, D. M. et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia–reperfusion injury model. J. Neurosci. Res. 88, 1569–1576 (2010).

    PubMed  CAS  PubMed Central  Google Scholar 

  166. Kim, C. R., Kim, J. H., Park, H. L. & Park, C. K. Ischemia reperfusion injury triggers TNFα induced-necroptosis in rat retina. Curr. Eye Res. 42, 771–779 (2017).

    PubMed  CAS  Google Scholar 

  167. Dvoriantchikova, G., Degterev, A. & Ivanov, D. Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia–reperfusion-induced retinal damage. Exp. Eye Res. 123, 1–7 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  168. Dong, K. et al. Necrostatin-1 protects photoreceptors from cell death and improves functional outcome after experimental retinal detachment. Am. J. Pathol. 181, 1634–1641 (2012).

    PubMed  CAS  Google Scholar 

  169. Murakami, Y. et al. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ. 21, 270–277 (2014).

    PubMed  CAS  Google Scholar 

  170. Cougnoux, A. et al. Necroptosis in Niemann–Pick disease, type C1: a potential therapeutic target. Cell Death Dis. 7, e2147 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014).

    CAS  PubMed  Google Scholar 

  172. Lule, S. et al. Genetic inhibition of receptor interacting protein kinase-1 reduces cell death and improves functional outcome after intracerebral hemorrhage in mice. Stroke 48, 2549–2556 (2017).

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Newton, K. et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565–1576 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753–7758 (2014).

    PubMed  CAS  PubMed Central  Google Scholar 

  175. Fan, H. et al. Reactive astrocytes undergo M1 microglia/macrophages-induced necroptosis in spinal cord injury. Mol. Neurodegener. 11, 14 (2016).

    PubMed  PubMed Central  Google Scholar 

  176. Liu, Z. M. et al. RIP3 deficiency protects against traumatic brain injury (TBI) through suppressing oxidative stress, inflammation and apoptosis: dependent on AMPK pathway. Biochem. Biophys. Res. Commun. 499, 112–119 (2018).

    PubMed  CAS  Google Scholar 

  177. Trichonas, G. et al. Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc. Natl Acad. Sci. USA 107, 21695–21700 (2010).

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institute of Neurological Disorders and Stroke (1R01NS082257) and the US National Institute on Aging (1R01AG047231, R21AG059073 and RF1AG055521) (to J.Y.).

Reviewer information

Nature Reviews Neuroscience thanks S. Finkbeiner, D. Rubinsztein and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this article.

Corresponding author

Correspondence to Junying Yuan.

Ethics declarations

Competing interests

J.Y. is a consultant for Denali Therapeutics. P.A. declares no competing interests. D.O. is an employee of Sanofi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Death receptors

(DRs). The receptors for tumour necrosis factor (TNF), FAS ligand (FASL) and TNF-related apoptosis-inducing ligands (TRAILs) that contain an intracellular protein–protein interaction domain known as the death domain and that can mediate cell death.

Extrinsic cell death

Cell death pathways such as extrinsic apoptosis and necroptosis that are activated upon stimulation of tumour necrosis factor (TNF) receptor 1 (TNFR1), FAS and certain TNF-related apoptosis-inducing ligand (TRAIL) receptors by their cognate ligands.

Intrinsic apoptosis

An apoptosis pathway that can be activated upon mitochondrial damage and that activates downstream caspases such as caspase 3.

Middle cerebral artery occlusion

(MCAo). A mouse model of stroke induced by the insertion of a filament into the carotid artery to block cerebral blood flow and induce tissue damage in the brain.

Experimental autoimmune encephalomyelitis

(EAE). An animal model of multiple sclerosis induced by immunizing with purified myelin, peptides from myelin-derived proteins or passive transfer of T cells reactive to these myelin proteins.

Immune silent

A state that does not induce immune activation or an inflammatory response.

Death domain

(DD). A protein–protein interaction module composed of a bundle of six α-helices.

RIPK1-dependent apoptosis

(RDA). RIPK1-dependent activation of caspase 8 and consequent apoptosis, initially triggered by tumour necrosis factor in cells deficient in transforming growth factor-β-activated kinase 1 (TAK1), TBK1 or inhibitor of apoptosis 1 (IAP1) and IAP2. RDA can be inhibited by receptor-interacting protein kinase 1 (RIPK1) inhibitors.

DFG-out conformation

The inactive conformation of the T-loop motif of a kinase, such as RIPK1.

Type II kinase inhibitor

A kinase inhibitor that inactivates the kinase by binding a hydrophobic pocket adjacent to the ATP-binding site. Type II kinase inhibitors are more specific than type I kinase inhibitors, which bind to the ATP-binding pocket itself.

DNA-encoded libraries

Synthetic chemical libraries made by conjugating chemical compounds or building blocks to short DNA fragments that serve as identification bar codes.

Wallerian degeneration

The degeneration of a distal axon after a nerve fibre is injured. It is independent of neuronal cell body loss but may contribute to eventual neuronal loss.

Cuprizone model

A rodent model of oligodendrocyte death and reversible demyelination that is induced by feeding with the copper chelator cuprizone.

Decompaction

Immature axon myelination pattern with loosely packed myelin sheath.

PC12 cells

A cell line derived from a pheochromocytoma of the rat adrenal medulla.

Lysosomal storage disease

A diseases that results from defects in lysosomal function owing to mutations in genes involved lipid metabolism and that often leads to neurodegeneration (for example, Gaucher disease).

Braak stage

A pathology scoring system used for both Alzheimer disease and Parkinson disease that refers to the extent of the distribution of neuropathology in these diseases.

Autophagy

A cellular mechanism involving the formation of double-membrane vesicles, known as autophagosomes, that fuse with lysosomes, in which the contents are degraded and recycled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Amin, P. & Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20, 19–33 (2019). https://doi.org/10.1038/s41583-018-0093-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-018-0093-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing