Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reconstructing organisms in silico: genome-scale models and their emerging applications

Abstract

Escherichia coli is considered to be the best-known microorganism given the large number of published studies detailing its genes, its genome and the biochemical functions of its molecular components. This vast literature has been systematically assembled into a reconstruction of the biochemical reaction networks that underlie E. coli’s functions, a process which is now being applied to an increasing number of microorganisms. Genome-scale reconstructed networks are organized and systematized knowledge bases that have multiple uses, including conversion into computational models that interpret and predict phenotypic states and the consequences of environmental and genetic perturbations. These genome-scale models (GEMs) now enable us to develop pan-genome analyses that provide mechanistic insights, detail the selection pressures on proteome allocation and address stress phenotypes. In this Review, we first discuss the overall development of GEMs and their applications. Next, we review the evolution of the most complete GEM that has been developed to date: the E. coli GEM. Finally, we explore three emerging areas in genome-scale modelling of microbial phenotypes: collections of strain-specific models, metabolic and macromolecular expression models, and simulation of stress responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic principles of constraint-based modelling of cellular functions.
Fig. 2: The increasing number of genome sequences and the development of genome-scale models.
Fig. 3: Historical development of E. coli genome-scale models.
Fig. 4: Generation of strain-specific E. coli genome-scale models and their application in multistrain studies.
Fig. 5: General formulation of a ME model and its application to the study of stress response.

Similar content being viewed by others

References

  1. Thiele, I. & Palsson, B. Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010). A detailed protocol to reconstruct a GEM from a genome sequence.

    CAS  Google Scholar 

  2. Norsigian, C. J., Fang, X., Seif, Y., Monk, J. M. & Palsson, B. O. A workflow for generating multi-strain genome-scale metabolic models of prokaryotes. Nat. Protoc. 15, 1–14 (2020). This article provides a semi-automated workflow to generate strain-specific GEMs from a curated reference model.

    CAS  Google Scholar 

  3. Price, N. D., Reed, J. L. & Palsson, B. Ø. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 (2004).

    CAS  Google Scholar 

  4. Lewis, N. E., Nagarajan, H. & Palsson, B. O. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 (2012).

    CAS  Google Scholar 

  5. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  Google Scholar 

  6. Feist, A. M. & Palsson, B. O. The biomass objective function. Curr. Opin. Microbiol. 13, 344–349 (2010).

    CAS  Google Scholar 

  7. Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245 (2010). This is primer that thoroughly explains FBA and its applications.

    CAS  Google Scholar 

  8. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: constraints-based reconstruction and analysis for python. BMC Syst. Biol. 7, 74 (2013).

    Google Scholar 

  9. Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).

    CAS  Google Scholar 

  10. Feist, A. M. & Palsson, B. Ø. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26, 659–667 (2008).

    CAS  Google Scholar 

  11. McCloskey, D., Palsson, B. Ø. & Feist, A. M. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 9, 661 (2013).

    CAS  Google Scholar 

  12. Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120 (2014).

    CAS  Google Scholar 

  13. O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).

    Google Scholar 

  14. Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).

    Google Scholar 

  15. Oberhardt, M. A., Palsson, B. Ø. & Papin, J. A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009).

    Google Scholar 

  16. Mazumdar, V., Snitkin, E. S., Amar, S. & Segrè, D. Metabolic network model of a human oral pathogen. J. Bacteriol. 191, 74–90 (2009).

    CAS  Google Scholar 

  17. Henry, C. S., Jankowski, M. D., Broadbelt, L. J. & Hatzimanikatis, V. Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys. J. 90, 1453–1461 (2006).

    CAS  Google Scholar 

  18. Navid, A. & Almaas, E. Genome-level transcription data of Yersinia pestis analyzed with a new metabolic constraint-based approach. BMC Syst. Biol. 6, 150 (2012).

    CAS  Google Scholar 

  19. Motter, A. E., Gulbahce, N., Almaas, E. & Barabási, A.-L. Predicting synthetic rescues in metabolic networks. Mol. Syst. Biol. 4, 168 (2008).

    Google Scholar 

  20. Montagud, A., Navarro, E., Fernández de Córdoba, P., Urchueguía, J. F. & Patil, K. R. Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Syst. Biol. 4, 156 (2010).

    Google Scholar 

  21. Mahadevan, R., Edwards, J. S. & Doyle, F. J. III. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340 (2002).

    CAS  Google Scholar 

  22. Hastings, J. et al. Multi-omics and genome-scale modeling reveal a metabolic shift during C. elegans aging. Front. Mol. Biosci. 6, 2 (2019).

    CAS  Google Scholar 

  23. Guan, N. et al. Comparative genomics and transcriptomics analysis-guided metabolic engineering of Propionibacterium acidipropionici for improved propionic acid production. Biotechnol. Bioeng. 115, 483–494 (2018).

    CAS  Google Scholar 

  24. Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003).

    CAS  Google Scholar 

  25. Hefzi, H. et al. A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst. 3, 434–443.e8 (2016).

    CAS  Google Scholar 

  26. Cautha, S. C. et al. Model-driven design of a Saccharomyces cerevisiae platform strain with improved tyrosine production capabilities. IFAC Proc. Vol. 46, 221–226 (2013).

    Google Scholar 

  27. McAnulty, M. J., Yen, J. Y., Freedman, B. G. & Senger, R. S. Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC Syst. Biol. 6, 42 (2012).

    CAS  Google Scholar 

  28. Cardoso, J. G. R., Andersen, M. R., Herrgård, M. J. & Sonnenschein, N. Analysis of genetic variation and potential applications in genome-scale metabolic modeling. Front. Bioeng. Biotechnol. 3, 13 (2015).

    Google Scholar 

  29. Folger, O. et al. Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7, 501 (2011).

    CAS  Google Scholar 

  30. Guzmán, G. I. et al. Model-driven discovery of underground metabolic functions in Escherichia coli. Proc. Natl Acad. Sci. USA 112, 929–934 (2015).

    Google Scholar 

  31. Kumar, M., Ji, B., Zengler, K. & Nielsen, J. Modelling approaches for studying the microbiome. Nat. Microbiol. 4, 1253–1267 (2019).

    CAS  Google Scholar 

  32. Zuñiga, C. et al. Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities. Nat. Microbiol. 4, 2184–2191 (2019).

    Google Scholar 

  33. Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363 (2012).

    CAS  Google Scholar 

  34. Stolyar, S. et al. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92 (2007).

    Google Scholar 

  35. Zhuang, K. et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5, 305–316 (2011).

    Google Scholar 

  36. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

    CAS  Google Scholar 

  37. Zomorrodi, A. R. & Segrè, D. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat. Commun. 8, 1563 (2017).

    Google Scholar 

  38. Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).

    CAS  Google Scholar 

  39. Chowdhury, S. & Fong, S. S. Computational modeling of the human microbiome. Microorganisms 8, 197 (2020).

    CAS  Google Scholar 

  40. Levy, R. & Borenstein, E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl Acad. Sci. USA 110, 12804–12809 (2013).

    CAS  Google Scholar 

  41. Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 3083 (2014).

    Google Scholar 

  42. Mardinoglu, A. & Nielsen, J. Systems medicine and metabolic modelling. J. Intern. Med. 271, 142–154 (2012).

    CAS  Google Scholar 

  43. Edwards, J. S. & Palsson, B. O. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274, 17410–17416 (1999).

    CAS  Google Scholar 

  44. Monk, J., Nogales, J. & Palsson, B. O. Optimizing genome-scale network reconstructions. Nat. Biotechnol. 32, 447–452 (2014).

    CAS  Google Scholar 

  45. Mendoza, S. N., Olivier, B. G., Molenaar, D. & Teusink, B. A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biol. 20, 158 (2019).

    Google Scholar 

  46. Satish Kumar, V., Ferry, J. G. & Maranas, C. D. Metabolic reconstruction of the archaeon methanogen Methanosarcina acetivorans. BMC Syst. Biol. 5, 28 (2011).

    Google Scholar 

  47. Benedict, M. N., Gonnerman, M. C., Metcalf, W. W. & Price, N. D. Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A. J. Bacteriol. 194, 855–865 (2012).

    CAS  Google Scholar 

  48. Peterson, J. R. et al. Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans. BMC Genomics 17, 924 (2016).

    Google Scholar 

  49. Sheikh, K., Förster, J. & Nielsen, L. K. Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol. Prog. 21, 112–121 (2005).

    CAS  Google Scholar 

  50. Lu, H. et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10, 3586 (2019).

    CAS  Google Scholar 

  51. de Oliveira Dal’Molin, C. G. & Nielsen, L. K. Plant genome-scale metabolic reconstruction and modelling. Curr. Opin. Biotechnol. 24, 271–277 (2013).

    Google Scholar 

  52. Mintz-Oron, S. et al. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc. Natl Acad. Sci. USA 109, 339–344 (2012).

    CAS  Google Scholar 

  53. Cheung, C. Y. M. et al. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. Plant. J. 75, 1050–1061 (2013).

    CAS  Google Scholar 

  54. Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31, 419–425 (2013).

    CAS  Google Scholar 

  55. Swainston, N. et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12, 109 (2016).

    Google Scholar 

  56. Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018).

    CAS  Google Scholar 

  57. Kumar, A., Suthers, P. F. & Maranas, C. D. MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinformatics 13, 6 (2012).

    Google Scholar 

  58. Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

    CAS  Google Scholar 

  59. Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).

    CAS  Google Scholar 

  60. Agren, R. et al. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput. Biol. 9, e1002980 (2013).

    CAS  Google Scholar 

  61. Wang, H. et al. RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput. Biol. 14, e1006541 (2018).

    Google Scholar 

  62. Arkin, A. P. et al. KBase: the United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).

    CAS  Google Scholar 

  63. Norsigian, C. J. et al. BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res. 48, D402–D406 (2019).

    Google Scholar 

  64. Glont, M. et al. BioModels: expanding horizons to include more modelling approaches and formats. Nucleic Acids Res. 46, D1248–D1253 (2018).

    CAS  Google Scholar 

  65. Moretti, S. et al. MetaNetX/MNXref–reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Res. 44, D523–D526 (2016).

    CAS  Google Scholar 

  66. Pabinger, S. et al. MEMOSys 2.0: an update of the bioinformatics database for genome-scale models and genomic data. Database 2014, bau004 (2014).

    Google Scholar 

  67. Noronha, A. et al. The virtual metabolic human database: integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Res. 47, D614–D624 (2019).

    CAS  Google Scholar 

  68. Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276 (2020).

    CAS  Google Scholar 

  69. Varma, A. & Palsson, B. O. Metabolic capabilities of Escherichia coli II. Optimal growth patterns. J. Theor. Biol. 165, 503–522 (1993).

    CAS  Google Scholar 

  70. Pramanik, J. & Keasling, J. D. Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 56, 398–421 (1997).

    CAS  Google Scholar 

  71. Pramanik, J. & Keasling, J. D. Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. Biotechnol. Bioeng. 60, 230–238 (1998).

    CAS  Google Scholar 

  72. Edwards, J. S. & Palsson, B. O. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl Acad. Sci. USA 97, 5528–5533 (2000).

    CAS  Google Scholar 

  73. Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54 (2003).

    Google Scholar 

  74. Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007).

    Google Scholar 

  75. Orth, J. D. et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism — 2011. Mol. Syst. Biol. 7, 535 (2011).

    Google Scholar 

  76. Monk, J. M. et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35, 904–908 (2017). This article provides the most up-to-date genome-scale metabolic model of E. coli.

    CAS  Google Scholar 

  77. Archer, C. T. et al. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12, 9 (2011).

    CAS  Google Scholar 

  78. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

    CAS  Google Scholar 

  79. Brunk, E. et al. Systems biology of the structural proteome. BMC Syst. Biol. 10, 26 (2016).

    Google Scholar 

  80. Mih, N. et al. ssbio: a Python framework for structural systems biology. Bioinformatics 34, 2155–2157 (2018).

    CAS  Google Scholar 

  81. Ghatak, S., King, Z. A., Sastry, A. & Palsson, B. O. The y-ome defines the 35% of Escherichia coli genes that lack experimental evidence of function. Nucleic Acids Res. 47, 2446–2454 (2019).

    CAS  Google Scholar 

  82. Mih, N. & Palsson, B. O. Expanding the uses of genome-scale models with protein structures. Mol. Syst. Biol. 15, e8601 (2019).

    CAS  Google Scholar 

  83. Magnúsdóttir, S. & Thiele, I. Modeling metabolism of the human gut microbiome. Curr. Opin. Biotechnol. 51, 90–96 (2018).

    Google Scholar 

  84. Opdam, S. et al. A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Syst. 4, 318–329.e6 (2017).

    CAS  Google Scholar 

  85. Rouli, L., Merhej, V., Fournier, P.-E. & Raoult, D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect. 7, 72–85 (2015).

    CAS  Google Scholar 

  86. Lukjancenko, O., Wassenaar, T. M. & Ussery, D. W. Comparison of 61 sequenced Escherichia coli genomes. Microb. Ecol. 60, 708–720 (2010).

    CAS  Google Scholar 

  87. Seif, Y. et al. Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nat. Commun. 9, 3771 (2018).

    CAS  Google Scholar 

  88. John, J., George, S., Nori, S. R. C. & Nelson-Sathi, S. Phylogenomic analysis reveals the evolutionary route of resistant genes in Staphylococcus aureus. Genome Biol. Evol. 11, 2917–2926 (2019).

    CAS  Google Scholar 

  89. Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl Acad. Sci. USA 112, E3574–E3581 (2015).

    CAS  Google Scholar 

  90. Yang, Z.-K., Luo, H., Zhang, Y., Wang, B. & Gao, F. Pan-genomic analysis provides novel insights into the association of E.coli with human host and its minimal genome. Bioinformatics 35, 1987–1991 (2019).

    CAS  Google Scholar 

  91. Monk, J. M. et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc. Natl Acad. Sci. USA 110, 20338–20343 (2013). This is the first study to focus on a strain-level study of E. coli using GEMs.

    CAS  Google Scholar 

  92. Fang, X. et al. Escherichia coli B2 strains prevalent in inflammatory bowel disease patients have distinct metabolic capabilities that enable colonization of intefstinal mucosa. BMC Syst. Biol. 12, 66 (2018).

    Google Scholar 

  93. Fang, X. et al. Metagenomics-based, strain-level analysis of Escherichia coli from a time-series of microbiome samples from a Crohn’s disease patient. Front. Microbiol. 9, 2559 (2018).

    Google Scholar 

  94. Bosi, E. et al. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc. Natl Acad. Sci. USA 113, E3801–E3809 (2016).

    CAS  Google Scholar 

  95. Seiler, N. & Atanassov, C. L. The natural polyamines and the immune system. Prog. Drug Res. 43, 87–141 (1994).

    CAS  Google Scholar 

  96. Norsigian, C. J. et al. Comparative genome-scale metabolic modeling of metallo-beta-lactamase–producing multidrug-resistant Klebsiella pneumoniae clinical isolates. Front. Cell. Infect. Microbiol. 9, 161 (2019).

    CAS  Google Scholar 

  97. Norsigian, C. J., Kavvas, E., Seif, Y., Palsson, B. O. & Monk, J. M. iCN718, an updated and improved genome-scale metabolic network reconstruction of Acinetobacter baumannii AYE. Front. Genet. 9, 121 (2018).

    Google Scholar 

  98. Fouts, D. E. et al. What makes a bacterial species pathogenic?: Comparative genomic analysis of the genus Leptospira. PLoS Negl. Trop. Dis. 10, e0004403 (2016).

    Google Scholar 

  99. Nogales, J. et al. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ. Microbiol. 22, 255–269 (2020).

    CAS  Google Scholar 

  100. Kavvas, E. S., Yang, L., Monk, J. M., Heckmann, D. & Palsson, B. O. A biochemically-interpretable machine learning classifier for microbial GWAS. Nat. Commun. 11, 2580 (2020).

    CAS  Google Scholar 

  101. Sánchez, B. J. et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol. 13, 935 (2017).

    Google Scholar 

  102. Carrera, J. et al. An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli. Mol. Syst. Biol. 10, 735 (2014).

    Google Scholar 

  103. Thiele, I., Jamshidi, N., Fleming, R. M. T. & Palsson, B. Ø. Genome-scale reconstruction of Escherichia coli’s transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput. Biol. 5, e1000312 (2009).

    Google Scholar 

  104. Milo, R. & Phillips, R. Cell Biology by the Numbers (Garland Science, 2015).

  105. Lerman, J. A. et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat. Commun. 3, 929 (2012).

    Google Scholar 

  106. Liu, J. K., O’Brien, E. J. & Lerman, J. A. Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale. BMC Syst. Biol. 8, 110 (2014).

    Google Scholar 

  107. Heckmann, D. et al. Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nat. Commun. 9, 5252 (2018).

    CAS  Google Scholar 

  108. Lloyd, C. J. et al. COBRAme: a computational framework for genome-scale models of metabolism and gene expression. PLoS Comput. Biol. 14, e1006302 (2018). This article provides a framework that streamlines ME model reconstruction and analysis.

    Google Scholar 

  109. Liu, J. K. et al. Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen. PLoS Comput. Biol. 15, e1006848 (2019).

    Google Scholar 

  110. Salvy, P. & Hatzimanikatis, V. The ETFL formulation allows multi-omics integration in thermodynamics-compliant metabolism and expression models. Nat. Commun. 11, 30 (2020). This article describes an implementation of the ME models called ‘ETFL’, for ‘expression and thermodynamics flux models’.

    CAS  Google Scholar 

  111. Salvy, P. & Hatzimanikatis, V. Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular metabolism. Preprint at bioRxiv https://doi.org/10.1101/2020.07.15.204420 (2020).

    Article  Google Scholar 

  112. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 44, D471–D480 (2016).

    CAS  Google Scholar 

  113. Nilsson, A., Nielsen, J. & Palsson, B. O. Metabolic models of protein allocation call for the kinetome. Cell Syst. 5, 538–541 (2017).

    CAS  Google Scholar 

  114. Heckmann, D. et al. Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers. Proc. Natl Acad. Sci. USA 117, 23182–23190 (2020).

    CAS  Google Scholar 

  115. Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).

    CAS  Google Scholar 

  116. Ye, C. et al. Comprehensive understanding of Saccharomyces cerevisiae phenotypes with whole-cell model WM_S288C. Biotechnol. Bioeng. 117, 1562–1574 (2020).

    CAS  Google Scholar 

  117. Macklin, D. N. et al. Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science 369, eaav3751 (2020).

    CAS  Google Scholar 

  118. Xu, P., Ranganathan, S., Fowler, Z. L., Maranas, C. D. & Koffas, M. A. G. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 13, 578–587 (2011).

    CAS  Google Scholar 

  119. Akesson, M., Förster, J. & Nielsen, J. Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6, 285–293 (2004).

    CAS  Google Scholar 

  120. Yim, H. et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7, 445–452 (2011).

    CAS  Google Scholar 

  121. Wang, Q., Chen, X., Yang, Y. & Zhao, X. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Appl. Microbiol. Biotechnol. 73, 887–894 (2006).

    CAS  Google Scholar 

  122. Imielinski, M., Belta, C., Rubin, H. & Halász, A. Systematic analysis of conservation relations in Escherichia coli genome-scale metabolic network reveals novel growth media. Biophys. J. 90, 2659–2672 (2006).

    CAS  Google Scholar 

  123. Yang, L. et al. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data. Proc. Natl Acad. Sci. USA 112, 10810–10815 (2015).

    CAS  Google Scholar 

  124. O’brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B. Ø. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol. 9, 693 (2013). This study outlines the development of the first E. coli ME model.

    Google Scholar 

  125. O’Brien, E. J., Utrilla, J. & Palsson, B. O. Quantification and classification of E. coli proteome utilization and unused protein costs across environments. PLoS Comput. Biol. 12, e1004998 (2016).

    Google Scholar 

  126. Lloyd, C. J., Monk, J., Yang, L., Ebrahim, A. & Palsson, B. O. Computation of condition-dependent proteome allocation reveals variability in the macro and micro nutrient requirements for growth. Preprint at bioRxiv https://doi.org/10.1101/2020.03.23.003236 (2020).

    Article  Google Scholar 

  127. Du, B., Yang, L., Lloyd, C. J., Fang, X. & Palsson, B. O. Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli. PLoS Comput. Biol. 15, e1007525 (2019). As one of the three stress response extensions of ME model, this study focuses on modelling response to acid stress.

    Google Scholar 

  128. Chen, K. et al. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc. Natl Acad. Sci. USA 114, 11548–11553 (2017). As one of the three stress response extensions of the ME model, FoldME focuses on simulation of response to temperature stress.

    CAS  Google Scholar 

  129. Yang, L. et al. Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc. Natl Acad. Sci. USA 116, 14368–14373 (2019). As one of the three stress response extensions of the ME model, OxidizeME incorporates mechanisms involved in response to oxidative stress.

    CAS  Google Scholar 

  130. Mayr, E. This is Biology: The Science of the Living World (Harvard Univ. Press, 1998).

  131. Palsson, B. Systems Biology (Cambridge Univ. Press, 2015).

  132. Davis, J. J. et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res. 48, D606–D612 (2020).

    CAS  Google Scholar 

  133. Bailey, J. E. Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol. Prog. 14, 8–20 (1998).

    CAS  Google Scholar 

  134. Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92 (2004).

    CAS  Google Scholar 

  135. Mahadevan, R., Palsson, B. Ø. & Lovley, D. R. In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nat. Rev. Microbiol. 9, 39–50 (2011).

    CAS  Google Scholar 

  136. Kim, H. U. et al. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol. Syst. Biol. 7, 460 (2011).

    Google Scholar 

  137. Luo, H. et al. Coupling S-adenosylmethionine-dependent methylation to growth: design and uses. PLoS Biol. 17, e2007050 (2019).

    CAS  Google Scholar 

  138. Reed, J. L. et al. Systems approach to refining genome annotation. Proc. Natl Acad. Sci. USA 103, 17480–17484 (2006).

    CAS  Google Scholar 

  139. Kumar, V. S. & Maranas, C. D. GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput. Biol. 5, e1000308 (2009).

    Google Scholar 

  140. Orth, J. D. & Palsson, B. Ø. Systematizing the generation of missing metabolic knowledge. Biotechnol. Bioeng. 107, 403–412 (2010).

    CAS  Google Scholar 

  141. Medlock, G. L. & Papin, J. A. Guiding the refinement of biochemical knowledgebases with ensembles of metabolic networks and machine learning. Cell Syst. 10, 109–119.e3 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of General Medical Sciences of the National Institutes of Health (grant R01GM057089) and the Novo Nordisk Foundation (grant NNF10CC1016517). Some figures were adapted from previously published figures, and the authors acknowledge the original authors of these figures and thank them for their contributions: J. M. Monk (Fig. 3), L. Yang (Fig. 5), K. Chen (Fig. 5), B. Du (Fig. 5) and A. Bordbar (Fig. 1).

Author information

Authors and Affiliations

Authors

Contributions

X.F. researched data for the article. X.F. and B.O.P. substantially contributed to discussion of the content. All authors wrote the article, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Bernhard O. Palsson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks María Suárez Diez, Sara Moreno Paz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Python

An interpreted, general-purpose programming language that is widely used in computational biology.

Reactomes

All the reactions involved in genome-scale models (or a certain model of interest). Each base unit is a reaction, and the entities are metabolites involved in the reactions, such as proteins, nucleic acids and small molecules.

Proteome allocation

The partition of proteomics resources into different functions to fulfil the organism’s need under the given condition.

Sensome

The components (such as genes and proteins) in an organism or cell that are involved in sensing the changes in the environment.

Proximal causation

Explains traits/events (such as change in proteome allocation) in terms of immediate physiological or environmental factors.

Distal causation

Explains traits/events (such as change in proteome allocation) in terms of evolutionary forces acting on them.

Expression matrix

(E matrix). A matrix that describes all components (including DNA, mRNA, proteins and metabolites) and reactions that are involved in the transcriptional and translational machinery in the organism of interest.

Overflow metabolism

When cells incompletely oxidize their substrate (which yields less energy) instead of using the more energetically efficient respiratory pathways to completely oxidize their substrates even when oxygen is available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Lloyd, C.J. & Palsson, B.O. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat Rev Microbiol 18, 731–743 (2020). https://doi.org/10.1038/s41579-020-00440-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-020-00440-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research