Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding interface stability in solid-state batteries

Subjects

A Publisher Correction to this article was published on 09 March 2020

This article has been updated

Abstract

Solid-state batteries (SSBs) using a solid electrolyte show potential for providing improved safety as well as higher energy and power density compared with conventional Li-ion batteries. However, two critical bottlenecks remain: the development of solid electrolytes with ionic conductivities comparable to or higher than those of conventional liquid electrolytes and the creation of stable interfaces between SSB components, including the active material, solid electrolyte and conductive additives. Although the first goal has been achieved in several solid ionic conductors, the high impedance at various solid/solid interfaces remains a challenge. Recently, computational models based on ab initio calculations have successfully predicted the stability of solid electrolytes in various systems. In addition, a large amount of experimental data has been accumulated for different interfaces in SSBs. In this Review, we summarize the experimental findings for various classes of solid electrolytes and relate them to computational predictions, with the aim of providing a deeper understanding of the interfacial reactions and insight for the future design and engineering of interfaces in SSBs. We find that, in general, the electrochemical stability and interfacial reaction products can be captured with a small set of chemical and physical principles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interfaces in cathode composites.
Fig. 2: Interface models for the evaluation of (electro)chemical stability.
Fig. 3: (Electro)chemical instability of sulfide solid electrolytes.
Fig. 4: (Electro)chemical instability of garnet solid electrolytes.
Fig. 5: Polyanionic oxides as a bridge between oxides and sulfides for good chemical compatibility.
Fig. 6: Electrochemical stability windows of common solid electrolytes.
Fig. 7: Trade-offs between ionic conductivity and electrochemical stability upon tuning the solid electrolyte composition.

Similar content being viewed by others

Change history

References

  1. Arora, P., White, R. E. & Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 145, 3647–3667 (1998).

    Article  CAS  Google Scholar 

  2. Vetter, J. et al. Ageing mechanisms in lithium-ion batteries. J. Power Sources 147, 269–281 (2005).

    Article  CAS  Google Scholar 

  3. Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Article  CAS  Google Scholar 

  4. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  CAS  Google Scholar 

  5. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  CAS  Google Scholar 

  6. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).

    Article  CAS  Google Scholar 

  7. Epelboin, I., Froment, M., Garreau, M., Thevenin, J. & Warin, D. Behavior of secondary lithium and aluminum-lithium electrodes in propylene carbonate. J. Electrochem. Soc. 127, 2100–2104 (1980).

    Article  CAS  Google Scholar 

  8. Han, F., Yue, J., Zhu, X. & Wang, C. Suppressing Li dendrite formation in Li2S–P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018).

    Article  CAS  Google Scholar 

  9. Yu, X., Bates, J. B., Jellison, G. E. & Hart, F. X. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997).

    Article  CAS  Google Scholar 

  10. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  CAS  Google Scholar 

  11. Ren, Y., Shen, Y., Lin, Y. & Nan, C.-W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015).

    Article  CAS  Google Scholar 

  12. Ponrouch, A., Marchante, E., Courty, M., Tarascon, J.-M. & Rosa Palacín, M. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572–8583 (2012).

    Article  CAS  Google Scholar 

  13. Valøen, L. O. & Reimers, J. N. Transport properties of LiPF6-based Li-ion battery electrolytes. J. Electrochem. Soc. 152, A882–A891 (2005).

    Article  CAS  Google Scholar 

  14. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adachi, G.-y Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023–1027 (1990).

    Article  CAS  Google Scholar 

  15. Fergus, J. W. Ion transport in sodium ion conducting solid electrolytes. Solid State Ion. 227, 102–112 (2012).

    Article  CAS  Google Scholar 

  16. Goodenough, J. B., Hong, H. Y.-P. & Kafalas, J. A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).

    Article  CAS  Google Scholar 

  17. Khireddine, H., Fabry, P., Caneiro, A. & Bochu, B. Optimization of NASICON composition for Na+ recognition. Sens. Actuators B Chem. 40, 223–230 (1997).

    Article  CAS  Google Scholar 

  18. Subramanian, M., Subramanian, R. & Clearfield, A. Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf). Solid State Ion. 18, 562–569 (1986).

    Article  Google Scholar 

  19. Von Alpen, U., Bell, M. F. & Höfer, H. H. Compositional dependence of the electrochemical and structural parameters in the Nasicon system (Na1+xSixZr2P3−xO12). Solid State Ion. 3, 215–218 (1981).

    Google Scholar 

  20. Briant, J. L. & Farrington, G. C. Ionic conductivity in lithium and lithium sodium beta alumina. J. Electrochem. Soc. 128, 1830–1834 (1981).

    Article  CAS  Google Scholar 

  21. Lu, X., Lemmon, J. P., Sprenkle, V. & Yang, Z. Sodium-beta alumina batteries: status and challenges. JOM 62, 31–36 (2010).

    Article  CAS  Google Scholar 

  22. Whittingham, M. S. & Huggins, R. A. Measurement of sodium ion transport in beta alumina using reversible solid electrodes. J. Chem. Phys. 54, 414–416 (1971).

    Article  CAS  Google Scholar 

  23. Yao, Y.-F. Y. & Kummer, J. T. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem. 29, 2453–2475 (1967).

    Article  CAS  Google Scholar 

  24. Allen, J. L., Wolfenstine, J., Rangasamy, E. & Sakamoto, J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources 206, 315–319 (2012).

    Article  CAS  Google Scholar 

  25. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Article  CAS  Google Scholar 

  26. Ohta, S., Kobayashi, T. & Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X=0–2). J. Power Sources 196, 3342–3345 (2011).

    Article  CAS  Google Scholar 

  27. Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    Article  CAS  Google Scholar 

  28. Stramare, S., Thangadurai, V. & Weppner, W. Lithium lanthanum titanates: a review. Chem. Mater. 15, 3974–3990 (2003).

    Article  CAS  Google Scholar 

  29. Zhao, Y. & Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 134, 15042–15047 (2012).

    Article  CAS  Google Scholar 

  30. Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001).

    Article  CAS  Google Scholar 

  31. Murayama, M., Sonoyama, N., Yamada, A. & Kanno, R. Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system. Solid State Ion. 170, 173–180 (2004).

    Article  CAS  Google Scholar 

  32. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  CAS  Google Scholar 

  33. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  34. Ong, S. P. et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013).

    Article  CAS  Google Scholar 

  35. Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M. & Minami, T. Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2001).

    Article  CAS  Google Scholar 

  36. Seino, Y., Ota, T., Takada, K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

    Article  CAS  Google Scholar 

  37. Deiseroth, H.-J. et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 47, (755–758 (2008).

    Google Scholar 

  38. Rao, R. P. & Adams, S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi A 208, 1804–1807 (2011).

    Article  CAS  Google Scholar 

  39. Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).

    Article  CAS  Google Scholar 

  40. Jansen, M. & Henseler, U. Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate. J. Solid State Chem. 99, 110–119 (1992).

    Article  CAS  Google Scholar 

  41. Bo, S. H., Wang, Y., Kim, J. C., Richards, W. D. & Ceder, G. Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4. Chem. Mater. 28, 252–258 (2016).

    Article  CAS  Google Scholar 

  42. Banerjee, A. et al. Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed. 128, 9786–9790 (2016).

    Article  Google Scholar 

  43. Richards, W. D. et al. Design and synthesis of the superionic conductor Na10SnP2S12. Nat. Commun. 7, 11009 (2016).

    Article  CAS  Google Scholar 

  44. Zhang, Z. et al. Na11Sn2PS12: a new solid state sodium superionic conductor. Energy Environ. Sci. 11, 87–93 (2018).

    Article  CAS  Google Scholar 

  45. Tang, W. S. et al. Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature. Adv. Energy Mater. 6, 1502237 (2016).

    Article  CAS  Google Scholar 

  46. Udovic, T. J. et al. Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater. 26, 7622–7626 (2014).

    Article  CAS  Google Scholar 

  47. Sakuda, A., Hayashi, A. & Tatsumisago, M. Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem. Mater. 22, 949–956 (2010).

    Article  CAS  Google Scholar 

  48. Takada, K. Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013).

    Article  CAS  Google Scholar 

  49. Takada, K. et al. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ion. 225, 594–597 (2012).

    Article  CAS  Google Scholar 

  50. Tian, Y. et al. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci. 10, 1150–1166 (2017).

    Article  CAS  Google Scholar 

  51. Wenzel, S. et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).

    Article  CAS  Google Scholar 

  52. Whiteley, J. M., Woo, J. H., Hu, E., Nam, K.-W. & Lee, S.-H. Empowering the lithium metal battery through a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812–A1817 (2014).

    Article  CAS  Google Scholar 

  53. Hoshina, K., Dokko, K. & Kanamura, K. Investigation on electrochemical interface between Li4Ti5O12 and Li1+xAlxTi2−x(PO4)3 NASICON-type solid electrolyte. J. Electrochem. Soc. 152, A2138–A2142 (2005).

    Article  Google Scholar 

  54. Ohta, S. et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J. Power Sources 265, 40–44 (2014).

    Article  CAS  Google Scholar 

  55. Tatsumisago, M., Nagao, M. & Hayashi, A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian Ceram. Soc. 1, 17–25 (2013).

    Article  Google Scholar 

  56. Ohta, N. et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006).

    Article  CAS  Google Scholar 

  57. Ohta, N. et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9, 1486–1490 (2007).

    Article  CAS  Google Scholar 

  58. Takada, K. et al. Interfacial modification for high-power solid-state lithium batteries. Solid State Ion. 179, 1333–1337 (2008).

    Article  CAS  Google Scholar 

  59. Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017).

    Article  CAS  Google Scholar 

  60. Koerver, R. et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017).

    Article  CAS  Google Scholar 

  61. Cheng, L. et al. The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys. Chem. Chem. Phys. 16, 18294–18300 (2014).

    Article  CAS  Google Scholar 

  62. Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    Article  CAS  Google Scholar 

  63. Wenzel, S., Leichtweiss, T., Krüger, D., Sann, J. & Janek, J. Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 278, 98–105 (2015).

    Article  CAS  Google Scholar 

  64. Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    Article  CAS  Google Scholar 

  65. Zhu, Y., He, X. & Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016).

    Article  CAS  Google Scholar 

  66. Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article  CAS  Google Scholar 

  67. Xiao, Y., Miara, Lincoln, J., Wang, Y. & Ceder, G. Computational screening of cathode coatings for solid-state batteries. Joule 3, 1252–1275 (2019).

    Article  CAS  Google Scholar 

  68. Koerver, R. et al. Redox-active cathode interphases in solid-state batteries. J. Mater. Chem. A 5, 22750–22760 (2017).

    Article  CAS  Google Scholar 

  69. Yoon, K., Kim, J.-J., Seong, W. M., Lee, M. H. & Kang, K. Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery. Sci. Rep. 8, 8066 (2018).

    Article  CAS  Google Scholar 

  70. Zhang, W. et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888–35896 (2017).

    Article  CAS  Google Scholar 

  71. Xu, L. et al. Interfaces in solid-state lithium batteries. Joule 2, 1991–2015 (2018).

    Article  CAS  Google Scholar 

  72. Brazier, A. et al. First cross-section observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy. Chem. Mater. 20, 2352–2359 (2008).

    Article  CAS  Google Scholar 

  73. Schwöbel, A., Hausbrand, R. & Jaegermann, W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ion. 273, 51–54 (2015).

    Article  CAS  Google Scholar 

  74. Aydinol, M. K., Kohan, A. F., Ceder, G., Cho, K. & Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354–1365 (1997).

    Article  CAS  Google Scholar 

  75. Klein, F., Jache, B., Bhide, A. & Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 15, 15876–15887 (2013).

    Article  CAS  Google Scholar 

  76. Wang, F. et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828–18836 (2011).

    Article  CAS  Google Scholar 

  77. Urban, A., Seo, D.-H. & Ceder, G. Computational understanding of Li-ion batteries. npj Comput. Mater. 2, 16002 (2016).

    Article  CAS  Google Scholar 

  78. Visbal, H. et al. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics. J. Power Sources 314, 85–92 (2016).

    Article  CAS  Google Scholar 

  79. Kim, K. H. et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764–767 (2011).

    Article  CAS  Google Scholar 

  80. Miara, L. et al. About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS Appl. Mater. Interfaces 8, 26842–26850 (2016).

    Article  CAS  Google Scholar 

  81. Zarabian, M., Bartolini, M., Pereira-Almao, P. & Thangadurai, V. X-ray photoelectron spectroscopy and AC impedance spectroscopy studies of Li-La-Zr-O solid electrolyte thin film/LiCoO2 cathode interface for all-solid-state Li batteries. J. Electrochem. Soc. 164, A1133–A1139 (2017).

    Article  CAS  Google Scholar 

  82. Appapillai, A. T., Mansour, A. N., Cho, J. & Shao-Horn, Y. Microstructure of LiCoO2 with and without “AlPO4” nanoparticle coating: combined STEM and XPS studies. Chem. Mater. 19, 5748–5757 (2007).

    Article  CAS  Google Scholar 

  83. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  CAS  Google Scholar 

  84. Lepley, N. D. & Holzwarth, N. A. W. Modeling interfaces between solids: application to Li battery materials. Phys. Rev. B 92, 1–15 (2015).

    Article  CAS  Google Scholar 

  85. Sharafi, A. et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961–7968 (2017).

    Article  CAS  Google Scholar 

  86. Haruyama, J., Sodeyama, K. & Tateyama, Y. Cation mixing properties toward Co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery. ACS Appl. Mater. Interfaces 9, 286–292 (2016).

    Article  CAS  Google Scholar 

  87. Xu, Z.-M., Bo, S.-H. & Zhu, H. LiCrS2 and LiMnS2 cathodes with extraordinary mixed electron-ion conductivities and favorable interfacial compatibilities with sulfide electrolyte. ACS Appl. Mater. Interfaces 10, 36941–36953 (2018).

    Article  CAS  Google Scholar 

  88. Sicolo, S., Fingerle, M., Hausbrand, R. & Albe, K. Interfacial instability of amorphous LiPON against lithium: a combined density functional theory and spectroscopic study. J. Power Sources 354, 124–133 (2017).

    Article  CAS  Google Scholar 

  89. Sumita, M., Tanaka, Y., Ikeda, M. & Ohno, T. Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries. J. Phys. Chem. C 120, 13332–13339 (2016).

    Article  CAS  Google Scholar 

  90. Camacho-Forero, L. E. & Balbuena, P. B. Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. J. Power Sources 396, 782–790 (2018).

    Article  CAS  Google Scholar 

  91. Tang, H. et al. Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations. Chem. Mater. 30, 163–173 (2017).

    Article  CAS  Google Scholar 

  92. Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013).

    Article  CAS  Google Scholar 

  93. Hayashi, A., Muramatsu, H., Ohtomo, T., Hama, S. & Tatsumisago, M. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. J. Mater. Chem. A 1, 6320–6326 (2013).

    Article  CAS  Google Scholar 

  94. Oh, G., Hirayama, M., Kwon, O., Suzuki, K. & Kanno, R. Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem. Mater. 28, 2634–2640 (2016).

    Article  CAS  Google Scholar 

  95. Chu, I.-H. et al. Insights into the performance limits of the Li7P3S11 superionic conductor: a combined first-principles and experimental study. ACS Appl. Mater. Interfaces 8, 7843–7853 (2016).

    Article  CAS  Google Scholar 

  96. Mo, Y., Ong, S. P. & Ceder, G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012).

    Article  CAS  Google Scholar 

  97. Han, F., Zhu, Y., He, X., Mo, Y. & Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1–9 (2016).

    Google Scholar 

  98. Han, F., Gao, T., Zhu, Y., Gaskell, K. J. & Wang, C. A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015).

    Article  CAS  Google Scholar 

  99. Wu, X., Villevieille, C., Novák, P. & El Kazzi, M. Monitoring the chemical and electronic properties of electrolyte–electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy. Phys. Chem. Chem. Phys. 20, 11123–11129 (2018).

    Article  CAS  Google Scholar 

  100. Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).

    Article  CAS  Google Scholar 

  101. Tarhouchi, I., Viallet, V., Vinatier, P. & Ménétrier, M. Electrochemical characterization of Li10SnP2S12: an electrolyte or a negative electrode for solid state Li-ion batteries? Solid State Ion. 296, 18–25 (2016).

    Article  CAS  Google Scholar 

  102. Hakari, T. et al. Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion–insertion processes. Chem. Mater. 29, 4768–4774 (2017).

    Article  CAS  Google Scholar 

  103. Swamy, T., Chen, X. & Chiang, Y.-M. Electrochemical redox behavior of Li-ion conducting sulfide solid electrolytes. Chem. Mater. 31, 707–713 (2019).

    Article  CAS  Google Scholar 

  104. Zhang, W. et al. Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium ion battery. ACS Appl. Mater. Interfaces 10, 22226–22236 (2018).

    Article  CAS  Google Scholar 

  105. Lacivita, V., Wang, Y., Bo, S.-H. & Ceder, G. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J. Mater. Chem. A 7, 8144–8155 (2019).

    Article  CAS  Google Scholar 

  106. Dean, J. A. Lange’s Handbook of Chemistry (McGraw-Hill, 1999).

  107. Tsukasaki, H. et al. Exothermal mechanisms in the charged LiNi1/3Mn1/3Co1/3O2 electrode layers for sulfide-based all-solid-state lithium batteries. J. Power Sources 434, 226714 (2019).

    Article  CAS  Google Scholar 

  108. Sang, L., Haasch, R. T., Gewirth, A. A. & Nuzzo, R. G. Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping. Chem. Mater. 29, 3029–3037 (2017).

    Article  CAS  Google Scholar 

  109. Wenzel, S. et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion. 286, 24–33 (2016).

    Article  CAS  Google Scholar 

  110. Choi, S.-J. et al. Synthesis and electrochemical characterization of a glass-ceramic Li7P2S8I solid electrolyte for all-solid-state Li-ion batteries. J. Electrochem. Soc. 165, A957–A962 (2018).

    Article  CAS  Google Scholar 

  111. Bron, P., Roling, B. & Dehnen, S. Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. J. Power Sources 352, 127–134 (2017).

    Article  CAS  Google Scholar 

  112. Suyama, M., Kato, A., Sakuda, A., Hayashi, A. & Tatsumisago, M. Lithium dissolution/deposition behavior with Li3PS4-LiI electrolyte for all-solid-state batteries operating at high temperatures. Electrochim. Acta 286, 158–162 (2018).

    Article  CAS  Google Scholar 

  113. Wu, E. A. et al. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: a joint experimental and computational study. ACS Appl. Mater. Interfaces 10, 10076–10086 (2018).

    Article  CAS  Google Scholar 

  114. Tian, Y. et al. Reactivity-guided interface design in Na metal solid-state batteries. Joule 3, 1037–1050 (2019).

    Article  CAS  Google Scholar 

  115. Deng, Z., Zhu, Z., Chu, I.-H. & Ong, S. P. Data-driven first-principles methods for the study and design of alkali superionic conductors. Chem. Mater. 29, 281–288 (2017).

    Article  CAS  Google Scholar 

  116. Auvergniot, J. et al. Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study. Solid State Ion. 300, 78–85 (2017).

    Article  CAS  Google Scholar 

  117. Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    Article  CAS  Google Scholar 

  118. Wenzel, S. et al. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018).

    Article  CAS  Google Scholar 

  119. Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite based all-solid-state batteries using time-of-flight secondary ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    Article  CAS  Google Scholar 

  120. Zhang, Z. et al. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J. Power Sources 410, 162–170 (2019).

    Article  CAS  Google Scholar 

  121. Garca-Martn, S., Amador, U., Morata-Orrantia, A., Rodrguez-Carvajal, J. & Alario-Franco, M. Á. Structure, microstructure, composition and properties of lanthanum lithium titanates and some substituted analogues. Z. Anorg. Allg. Chem. 635, 2363–2373 (2009).

    Google Scholar 

  122. Ma, C. et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 7, 1638–1642 (2014).

    Article  CAS  Google Scholar 

  123. Xu, X., Wen, Z., Wu, J. & Yang, X. Preparation and electrical properties of NASICON-type structured Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by the citric acid-assisted sol–gel method. Solid State Ion. 178, 29–34 (2007).

    Article  CAS  Google Scholar 

  124. Li, S. et al. Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X = Cl, Br). Solid State Ion. 284, 14–19 (2016).

    Article  CAS  Google Scholar 

  125. Inaguma, Y. & Nakashima, M. A rechargeable lithium–air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. J. Power Sources 228, 250–255 (2013).

    Article  CAS  Google Scholar 

  126. Schipper, F. et al. Recent advances and remaining challenges for lithium ion battery cathodes I. Nickel-Rich, LiNixCoyMnzO2. J. Electrochem. Soc. 164, A6220–A6228 (2017).

    Article  CAS  Google Scholar 

  127. Antolini, E. & Ferretti, M. Synthesis and thermal stability of LiCoO2. J. Solid State Chem. 117, 1–7 (1995).

    Article  CAS  Google Scholar 

  128. Park, K. et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater. 28, 8051–8059 (2016).

    Article  CAS  Google Scholar 

  129. Yoshinari, T. et al. Interfacial stability of phosphate-NASICON solid electrolytes in Ni-rich NCM cathode-based solid-state batteries. ACS Appl. Mater. Interfaces 11, 23244–23253 (2019).

    Article  CAS  Google Scholar 

  130. Yu, S. et al. Monolithic all-phosphate solid-state lithium-ion battery with improved interfacial compatibility. ACS Appl. Mater. Interfaces 10, 22264–22277 (2018).

    Article  CAS  Google Scholar 

  131. Qin, S. et al. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl. Phys. Lett. 112, 113901 (2018).

    Article  CAS  Google Scholar 

  132. Murugan, R., Ramakumar, S. & Janani, N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem. Comm. 13, 1373–1375 (2011).

    Article  CAS  Google Scholar 

  133. Murugan, R., Weppner, W., Schmid-Beurmann, P. & Thangadurai, V. Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12. Mater. Sci. Eng. B 143, 14–20 (2007).

    Article  CAS  Google Scholar 

  134. Thangadurai, V., Kaack, H. & Weppner, W. J. F. Novel fast lithium ion conduction in garnet-type Li5La3M2O2 (M = Nb, Ta). J. Am. Ceram. Soc. 86, 437–440 (2003).

    Article  CAS  Google Scholar 

  135. Li, Y., Han, J.-T., Wang, C.-A., Xie, H. & Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012).

    Article  CAS  Google Scholar 

  136. Thangadurai, V. & Weppner, W. Li6ALa2Ta2O12 (A=Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107–112 (2005).

    Article  CAS  Google Scholar 

  137. Li, Y. et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 140, 6448–6455 (2018).

    Article  CAS  Google Scholar 

  138. Sharafi, A. et al. Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 5, 13475–13487 (2017).

    Article  CAS  Google Scholar 

  139. Dai, J., Yang, C., Wang, C., Pastel, G. & Hu, L. Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv. Mater. 30, 1802068 (2018).

    Article  CAS  Google Scholar 

  140. Hofstetter, K., Samson, A. J., Narayanan, S. & Thangadurai, V. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium. J. Power Sources 390, 297–312 (2018).

    Article  CAS  Google Scholar 

  141. Kotobuki, M. & Kanamura, K. Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte. Ceram. Int. 39, 6481–6487 (2013).

    Article  CAS  Google Scholar 

  142. Kotobuki, M., Kanamura, K., Sato, Y. & Yoshida, T. Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J. Power Sources 196, 7750–7754 (2011).

    Article  CAS  Google Scholar 

  143. Rangasamy, E. et al. A high conductivity oxide–sulfide composite lithium superionic conductor. J. Mater. Chem. A 2, 4111–4116 (2014).

    Article  CAS  Google Scholar 

  144. Jalem, R. et al. Experimental and first-principles DFT study on the electrochemical reactivity of garnet-type solid electrolytes with carbon. J. Mater. Chem. A 4, 14371–14379 (2016).

    Article  CAS  Google Scholar 

  145. Miara, L. J., Richards, W. D., Wang, Y. E. & Ceder, G. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets. Chem. Mater. 27, 4040–4047 (2015).

    Article  CAS  Google Scholar 

  146. Nakayama, M., Kotobuki, M., Munakata, H., Nogami, M. & Kanamura, K. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides. Phys. Chem. Chem. Phys. 14, 10008–10014 (2012).

    Article  CAS  Google Scholar 

  147. Li, Y., Wang, C.-A., Xie, H., Cheng, J. & Goodenough, J. B. High lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochem. Comm. 13, 1289–1292 (2011).

    Article  CAS  Google Scholar 

  148. Nemori, H. et al. Stability of garnet-type solid electrolyte LixLa3A2−yByO12 (A = Nb or Ta, B = Sc or Zr). Solid State Ion. 282, 7–12 (2015).

    Article  CAS  Google Scholar 

  149. Kim, Y. et al. Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M= Nb or Ta) against metallic lithium. Front Energy Res. 4, 20 (2016).

    Article  CAS  Google Scholar 

  150. Cheng, L. et al. Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12. J. Mater. Chem. A 2, 172–181 (2014).

    Article  CAS  Google Scholar 

  151. Yan, X. et al. A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature. Ionics 24, 1545–1551 (2018).

    Article  CAS  Google Scholar 

  152. Fingerle, M., Loho, C., Ferber, T., Hahn, H. & Hausbrand, R. Evidence of the chemical stability of the garnet-type solid electrolyte Li5La3Ta2O12 towards lithium by a surface science approach. J. Power Sources 366, 72–79 (2017).

    Article  CAS  Google Scholar 

  153. Wolfenstine, J., Allen, J. L., Read, J. & Sakamoto, J. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature. J. Mater. Sci. 48, 5846–5851 (2013).

    Article  CAS  Google Scholar 

  154. Ma, C., Cheng, Y., Yin, K., Luo, J. & Sharafi, A. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 16, 7030–7036 (2016).

    Article  CAS  Google Scholar 

  155. Zhu, Y. et al. Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv. Energy Mater. 9, (1803440 (2019).

    Google Scholar 

  156. Rettenwander, D. et al. Interface instability of Fe-stabilized Li7La3Zr2O12 versus Li metal. J. Phys. Chem. C 122, 3780–3785 (2018).

    Article  CAS  Google Scholar 

  157. Afyon, S., Krumeich, F. & Rupp, J. L. M. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J. Mater. Chem. A 3, 18636–18648 (2015).

    Article  CAS  Google Scholar 

  158. Ong, S. P., Wang, L., Kang, B. & Ceder, G. Li–Fe–P–O2 phase diagram from first principles calculations. Chem. Mater. 20, 1798–1807 (2008).

    Article  CAS  Google Scholar 

  159. Yi, E., Wang, W., Kieffer, J. & Laine, R. M. Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO). J. Mater. Chem. A 4, 12947–12954 (2016).

    Article  CAS  Google Scholar 

  160. Ren, Y., Liu, T., Shen, Y., Lin, Y. & Nan, C.-W. Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J. Materiomics 2, 256–264 (2016).

    Article  Google Scholar 

  161. Thangadurai, V. & Weppner, W. Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes. J. Power Sources 142, 339–344 (2005).

    Article  CAS  Google Scholar 

  162. Tsai, C.-L. et al. A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes. Sustain. Energy Fuels 3, 280–291 (2019).

    Article  CAS  Google Scholar 

  163. Bitzer, M., Van Gestel, T. & Uhlenbruck, S. Sol-gel synthesis of thin solid Li7La3Zr2O12 electrolyte films for Li-ion batteries. Thin Solid Films 615, 128–134 (2016).

    Article  CAS  Google Scholar 

  164. Vardar, G. et al. Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode. Chem. Mater. 30, 6259–6276 (2018).

    Article  CAS  Google Scholar 

  165. Ellis, B. L., Lee, K. T. & Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010).

    Article  CAS  Google Scholar 

  166. Ohta, S., Kobayashi, T., Seki, J. & Asaoka, T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J. Power Sources 202, 332–335 (2012).

    Article  CAS  Google Scholar 

  167. Ma, X., Kang, B. & Ceder, G. High rate micron-sized ordered LiNi0.5Mn1.5O4. J. Electrochem. Soc. 157, A925–A931 (2010).

    Article  CAS  Google Scholar 

  168. Manthiram, A., Chemelewski, K. & Lee, E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ. Sci. 7, 1339–1350 (2014).

    Article  CAS  Google Scholar 

  169. Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993).

    Article  CAS  Google Scholar 

  170. Suzuki, N., Shirai, S., Takahashi, N., Inaba, T. & Shiga, T. A lithium phosphorous oxynitride (LiPON) film sputtered from unsintered Li3PO4 powder target. Solid State Ion. 191, 49–54 (2011).

    Article  CAS  Google Scholar 

  171. Le Van-Jodin, L., Ducroquet, F., Sabary, F. & Chevalier, I. Dielectric properties, conductivity and Li+ ion motion in LiPON thin films. Solid State Ion. 253, 151–156 (2013).

    Article  CAS  Google Scholar 

  172. Li, J., Dudney, N. J., Nanda, J. & Liang, C. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 6, 10083–10088 (2014).

    Article  CAS  Google Scholar 

  173. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000).

    Article  CAS  Google Scholar 

  174. Alpen, U. V., Rabenau, A. & Talat, G. H. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett. 30, 621–623 (1977).

    Article  Google Scholar 

  175. Nazri, G. Preparation, structure and ionic conductivity of lithium phosphide. Solid State Ion. 34, 97–102 (1989).

    Article  CAS  Google Scholar 

  176. Fingerle, M., Buchheit, R., Sicolo, S., Albe, K. & Hausbrand, R. Reaction and space charge layer formation at the LiCoO2–LiPON interface: insights on defect formation and ion energy level alignment by a combined surface science–simulation approach. Chem. Mater. 29, 7675–7685 (2017).

    Article  CAS  Google Scholar 

  177. Wang, Z. et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760–3767 (2016).

    Article  CAS  Google Scholar 

  178. Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    Article  CAS  Google Scholar 

  179. Chen, C. H. & Amine, K. Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ion. 144, 51–57 (2001).

    Article  CAS  Google Scholar 

  180. Bohnke, O., Bohnke, Cl & Fourquet, J. L. Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ion. 91, 21–31 (1996).

    Article  CAS  Google Scholar 

  181. Shan, Y. J., Chen, L., Inaguma, Y., Itoh, M. & Nakamura, T. Oxide cathode with perovskite structure for rechargeable lithium batteries. J. Power Sources 54, 397–402 (1995).

    Article  CAS  Google Scholar 

  182. Jiang, Z. et al. Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018).

    Article  CAS  Google Scholar 

  183. Nakayama, M., Usui, T., Uchimoto, Y., Wakihara, M. & Yamamoto, M. Changes in electronic structure upon lithium insertion into the A-site deficient perovskite type oxides (Li, La) TiO3. J. Phys. Chem. B 109, 4135–4143 (2005).

    Article  CAS  Google Scholar 

  184. Kishida, K. et al. Microstructure of the LiCoO2 (cathode)/La2/3−xLi3xTiO3 (electrolyte) interface and its influences on the electrochemical properties. Acta Mater. 55, 4713–4722 (2007).

    Article  CAS  Google Scholar 

  185. Liao, C.-L., Wen, C.-H. & Fung, K.-Z. The stability between perovskite La2/3−xLi3x1/3−2xTiO3 (3x = 0.3) electrolyte and LiMmOn (M = Mn, Ni and Co) cathodes. J. Alloys Compd. 432, L22–L25 (2007).

    Article  CAS  Google Scholar 

  186. Kotobuki, M. et al. Compatibility of LiCoO2 and LiMn2O4 cathode materials for Li0.55La0.35TiO3 electrolyte to fabricate all-solid-state lithium battery. J. Power Sources 195, 5784–5788 (2010).

    Article  CAS  Google Scholar 

  187. Lü, X. et al. Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries. Adv. Sci. 3, 1500359 (2016).

    Article  CAS  Google Scholar 

  188. Lü, X. et al. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity. Chem. Commun. 50, 11520–11522 (2014).

    Article  CAS  Google Scholar 

  189. Emly, A., Kioupakis, E. & Van der Ven, A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors. Chem. Mater. 25, 4663–4670 (2013).

    Article  CAS  Google Scholar 

  190. Zhang, Y., Zhao, Y. & Chen, C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites. Phys. Rev. B 87, 134303 (2013).

    Article  CAS  Google Scholar 

  191. Whangbo, M.-H., Koo, H.-J., Villesuzanne, A. & Pouchard, M. Effect of metal–oxygen covalent bonding on the competition between Jahn–Teller distortion and charge disproportionation in the perovskites of high-spin d4 metal ions LaMnO3 and CaFeO3. Inorg. Chem. 41, 1920–1929 (2002).

    Article  CAS  Google Scholar 

  192. Braga, M. H., Ferreira, J. A., Stockhausen, V., Oliveira, J. E. & El-Azab, A. Novel Li3ClO based glasses with superionic properties for lithium batteries. J. Mater. Chem. A 2, 5470–5480 (2014).

    Article  CAS  Google Scholar 

  193. Li, Y. et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries. Angew. Chem. Int. Ed. 55, 9965–9968 (2016).

    Article  CAS  Google Scholar 

  194. Anantharamulu, N. et al. A wide-ranging review on Nasicon type materials. J. Mater. Sci. 46, 2821–2837 (2011).

    Article  CAS  Google Scholar 

  195. Arbi, K., Bucheli, W., Jiménez, R. & Sanz, J. High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 35, 1477–1484 (2015).

    Article  CAS  Google Scholar 

  196. Fu, J. Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5. Solid State Ion. 104, 191–194 (1997).

    Article  CAS  Google Scholar 

  197. Feng, J. K., Lu, L. & Lai, M. O. Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3. J. Alloys Compd. 501, 255–258 (2010).

    Article  CAS  Google Scholar 

  198. Hartmann, P. et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117, 21064–21074 (2013).

    Article  CAS  Google Scholar 

  199. Wu, B. et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 11, 1803–1810 (2018).

    Article  CAS  Google Scholar 

  200. He, L. et al. Failure mechanism and interface engineering for NASICON structure all-solid-state lithium metal batteries. ACS. Appl. Mater. Interfaces 11, 20895–20904 (2019).

    Article  CAS  Google Scholar 

  201. Lewis, J. A. et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591–599 (2019).

    Article  CAS  Google Scholar 

  202. Tippens, J. et al. Visualizing chemo-mechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4, 1475–1483 (2019).

    Article  CAS  Google Scholar 

  203. Xu, X., Wen, Z., Wu, X., Yang, X. & Gu, Z. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3−xLi2O (x=0.0–0.20) with good electrical and electrochemical properties. J. Am. Ceram. Soc. 90, 2802–2806 (2007).

    Article  CAS  Google Scholar 

  204. Kim, H.-S. et al. Characterization of sputter-deposited LiCoO2 thin film grown on NASICON-type electrolyte for application in all-solid-state rechargeable lithium battery. ACS Appl. Mater. Interfaces 9, 16063–16070 (2017).

    Article  CAS  Google Scholar 

  205. Li, Y. et al. Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc. Natl Acad. Sci. USA 113, 13313–13317 (2016).

    Article  CAS  Google Scholar 

  206. El-Shinawi, H., Regoutz, A., Payne, D. J., Cussen, E. J. & Corr, S. A. NASICON LiM2(PO4)3 electrolyte (M= Zr) and electrode (M= Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance. J. Mater. Chem. A 6, 5296–5303 (2018).

    Article  CAS  Google Scholar 

  207. Kato, T. et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J. Power Sources 260, 292–298 (2014).

    Article  CAS  Google Scholar 

  208. Kim, Y. et al. High voltage stability of LiCoO2 particles with a nano-scale Lipon coating. Electrochim. Acta 56, 6573–6580 (2011).

    Article  CAS  Google Scholar 

  209. Martha, S. K., Nanda, J., Kim, Y., Unocic, R. R. & Pannala, S. Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. J. Mater. Chem. A 1, 5587–5595 (2013).

    Article  CAS  Google Scholar 

  210. Song, J., Jacke, S., Becker, D., Hausbrand, R. & Jaegermann, W. Stabilization of thin film LiCoO2 electrode by LiPON coating. Electrochem. Solid-State Lett. 14, A11–A13 (2011).

    Article  CAS  Google Scholar 

  211. Li, X., et al. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J. Energy Chem. 40:39-45.

  212. Ito, S. et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J. Power Sources 248, 943–950 (2014).

    Article  CAS  Google Scholar 

  213. Sakuda, A., Kitaura, H., Hayashi, A., Tadanaga, K. & Tatsumisago, M. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses. Electrochem. Solid-State Lett. 11, A1–A3 (2008).

    Article  CAS  Google Scholar 

  214. Sakurai, Y., Sakuda, A., Hayashi, A. & Tatsumisago, M. Preparation of amorphous Li4SiO4–Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries. Solid State Ion. 182, 59–63 (2011).

    Article  CAS  Google Scholar 

  215. Jung, S. H. et al. Li3BO3–Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem. Mater. 30, 8190–8200 (2018).

    Article  CAS  Google Scholar 

  216. Chen, K. et al. Effect of introducing interlayers into electrode/electrolyte interface in all-solid-state battery using sulfide electrolyte. Solid State Ion. 327, 150–156 (2018).

    Article  CAS  Google Scholar 

  217. Kwak, H. W. & Park, Y. J. Cathode coating using LiInO2-LiI composite for stable sulfide-based all-solid-state batteries. Sci. Rep. 9, 8099 (2019).

    Article  CAS  Google Scholar 

  218. Kwak, H. W. & Park, Y. J. Li2MoO4 coated Ni-rich cathode for all-solid-state batteries. Thin Solid Films 660, 625–630 (2018).

    Article  CAS  Google Scholar 

  219. Ohta, S. et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013).

    Article  CAS  Google Scholar 

  220. Liu, Y. et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl. Mater. Interfaces 10, 31240–31248 (2018).

    Article  CAS  Google Scholar 

  221. Sang, L. et al. Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface for all-solid-state Li batteries. Chem. Mater. 30, 8747–8756 (2018).

    Article  CAS  Google Scholar 

  222. Ruan, Y. et al. Acid induced conversion towards robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state battery. J. Mater. Chem. A 7, 14565–14574 (2019).

    Article  CAS  Google Scholar 

  223. Zhang, Z. et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 10, 2556–2565 (2018).

    Article  CAS  Google Scholar 

  224. Zhu, Y., He, X. & Mo, Y. Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv. Sci. 4, 1600517 (2017).

    Article  CAS  Google Scholar 

  225. Cheng, Q. et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule 3, 1510–1522 (2019).

    Article  CAS  Google Scholar 

  226. Shigeno, M. et al. New lithium-conducting nitride glass Li3BN2. Solid State Ion. 339, 114985 (2019).

    Article  CAS  Google Scholar 

  227. Wang, Y., Richards, W. D., Bo, S.-H., Miara, L. J. & Ceder, G. Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11 (X = O, S, Se). Chem. Mater. 29, 7475–7482 (2017).

    Article  CAS  Google Scholar 

  228. Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018).

    Article  CAS  Google Scholar 

  229. Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019).

    Article  CAS  Google Scholar 

  230. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018).

    Article  CAS  Google Scholar 

  231. Li, X. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019).

    Article  CAS  Google Scholar 

  232. Krauskopf, T., Culver, S. P. & Zeier, W. G. Bottleneck of diffusion and inductive effects in Li10Ge1−xSnxP2S12. Chem. Mater. 30, 1791–1798 (2018).

    Article  CAS  Google Scholar 

  233. Nolan, A. M., Zhu, Y., He, X., Bai, Q. & Mo, Y. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule 2, 2016–2046 (2018).

    Article  CAS  Google Scholar 

  234. Sendek, A. D. et al. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 10, 306–320 (2017).

    Article  CAS  Google Scholar 

  235. Pradel, A. & Ribes, M. Lithium chalcogenide conductive glasses. Mater. Chem. Phys. 23, 121–142 (1989).

    Article  CAS  Google Scholar 

  236. Duchêne, L. et al. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chem. Commun. 53, 4195–4198 (2017).

    Article  CAS  Google Scholar 

  237. Sadikin, Y., Brighi, M., Schouwink, P. & Cˇerny`, R. Superionic conduction of sodium and lithium in anion-mixed hydroborates Na3BH4B12H12 and (Li0.7Na0.3)3BH4B12H12. Adv. Energy Mater. 5, 1501016 (2015).

    Article  CAS  Google Scholar 

  238. Dewald, G., et.al. Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chem. Mater., 31:8328-8337, 2019.

  239. Hori, S. et al. Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+ δ P2− δS12 (M = Si, Sn). Faraday Discuss. 176, 83–94 (2015).

    Article  CAS  Google Scholar 

  240. Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2017).

    Article  CAS  Google Scholar 

  241. Yu, C. et al. Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li–S batteries. J. Mater. Chem. A 7, 10412–10421 (2019).

    Article  CAS  Google Scholar 

  242. Smith, A. J., Burns, J. C. & Dahn, J. R. A high precision study of the Coulombic efficiency of Li-ion batteries. Electrochem. Solid-State Lett. 13, A177–A179 (2010).

    Article  CAS  Google Scholar 

  243. Smith, A. J., Burns, J. C., Trussler, S. & Dahn, J. R. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries. J. Electrochem. Soc. 157, A196–A202 (2010).

    Article  CAS  Google Scholar 

  244. Farhad, S. & Nazari, A. Introducing the energy efficiency map of lithium-ion batteries. Int. J. Energy Res. 43, 931–944 (2019).

    Article  CAS  Google Scholar 

  245. Meister, P. et al. Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency. Chem. Mater. 28, 7203–7217 (2016).

    Article  CAS  Google Scholar 

  246. Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article  CAS  Google Scholar 

  247. Xiong, S. et al. Computation-guided design of LiTaSiO5, a new lithium ionic conductor with sphene structure. Adv. Energy Mater. 9, 1803821 (2019).

    Article  CAS  Google Scholar 

  248. He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).

    Article  CAS  Google Scholar 

  249. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    Article  CAS  Google Scholar 

  250. Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work on ionic conductivity design was funded by the Samsung Advanced Institute of Technology. The development of the interfacial reactivity theory was funded by the Materials Project Program (grant no. KC23MP) through the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231. Some of the work on sulfide electrolytes was supported by the Assistant Secretary of Energy Efficiency and Renewable Energy, Vehicle Technologies Office of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 under the Advanced Battery Materials Research (BMR) Program.

Author information

Authors and Affiliations

Authors

Contributions

G.C. conceived the manuscript. Y.X. researched the data. S.-H.B. and Y.X. wrote the section on sulfides. Y.X. wrote the sections on garnets and coatings. J.C.K. wrote the sections on LiPON and antiperovskites. Y.W. and Y.X. wrote the sections on perovskites and NASICONs. G.C., Y.X. and L.J.M. wrote the discussion and conclusions sections. Y.X., Y.W. and L.J.M. designed the table and figures. All authors edited and reviewed the manuscript before submission.

Corresponding author

Correspondence to Gerbrand Ceder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Wang, Y., Bo, SH. et al. Understanding interface stability in solid-state batteries. Nat Rev Mater 5, 105–126 (2020). https://doi.org/10.1038/s41578-019-0157-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0157-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing