Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chiral topological superconductivity arising from the interplay of geometric phase and electron correlation

Abstract

In modern theory of solids, many-electron correlations can give rise to superconductivity, while the Berry or geometric phase is responsible for non-trivial topology. So far, these two physical ingredients have been taken into account only in a simple additive manner. Here, we carry out a systematic study of the interplay between geometric phase and electron correlation as well as their combined effects on topological and superconducting properties. Based on first-principles studies of Pb3Bi/Ge(111) as a prototypical system, we develop a generic two-dimensional effective formalism that respects hexagonal symmetry with Rashba spin–orbit coupling, displays a van Hove singularity and includes geometric phase-decorated electron correlations. Our functional renormalization group analysis shows that superconductivity dominates the competing orders in the weak interaction regime, with two consequences. First, the renormalized geometric phase flows to three stable fixed points, favouring chiral (px ± ipy)-wave and f-wave superconducting states. Second, the corresponding superconductivity can be substantially enhanced. We construct the phase diagram of the topological quantum states, and identify hole-doped Pb3Bi/Ge(111) as an appealing platform for realizing chiral topological superconductivity in two-dimensional systems that are highly desirable for detecting and braiding Majorana fermions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal and electronic structures of Pb3Bi/Ge(111).
Fig. 2: Geometric phase induced by a monopole.
Fig. 3: RG flows of the coupling strengths and geometric phase.
Fig. 4: Phase diagram of the superconducting states.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on request.

References

  1. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  2. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989).

    Article  ADS  Google Scholar 

  3. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  4. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  5. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Article  ADS  Google Scholar 

  6. Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    Article  ADS  Google Scholar 

  7. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  8. Murakami, S. & Nagaosa, N. Berry phase in magnetic superconductors. Phys. Rev. Lett. 90, 057002 (2003).

    Article  ADS  Google Scholar 

  9. Li, Y. & Haldane, F. D. M. Topological nodal cooper pairing in doped Weyl metals. Phys. Rev. Lett. 120, 067003 (2018).

    Article  ADS  Google Scholar 

  10. Sato, M. Topological properties of spin-triplet superconductors and Fermi surface topology in the normal state. Phys. Rev. B 79, 214526 (2009).

    Article  ADS  Google Scholar 

  11. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological invariants for the Fermi surface of a time-reversal-invariant superconductor. Phys. Rev. B 81, 134508 (2010).

    Article  ADS  Google Scholar 

  12. Sato, M. Topological odd-parity superconductors. Phys. Rev. B 81, 220504 (2010).

    Article  ADS  Google Scholar 

  13. Fu, L. & Berg, E. Odd-parity topological superconductors: theory and application to CuxBi2Se3. Phys. Rev. Lett. 105, 097001 (2010).

    Article  ADS  Google Scholar 

  14. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  15. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  ADS  Google Scholar 

  16. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    Article  ADS  Google Scholar 

  17. Ivanov, D. A. Non-abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    Article  ADS  Google Scholar 

  18. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  19. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  20. Sau, J. D., Lutchyn, R. M., Tewari, S. & Das Sarma, S. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).

    Article  ADS  Google Scholar 

  21. Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).

    Article  ADS  Google Scholar 

  22. Sasaki, S. et al. Topological superconductivity in CuxBi2Se3. Phys. Rev. Lett. 107, 217001 (2011).

    Article  ADS  Google Scholar 

  23. Wang, M.-X. et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 336, 52–55 (2012).

    Article  ADS  Google Scholar 

  24. Matano, K., Kriener, M., Segawa, K., Ando, Y. & Zheng, G.-Q. Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3. Nat. Phys. 12, 852–854 (2016).

    Article  Google Scholar 

  25. Sun, H.-H. et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).

    Article  ADS  Google Scholar 

  26. Shi, X. et al. FeTe1 − xSex monolayer films: towards the realization of high-temperature connate topological superconductivity. Sci. Bull. 62, 503–507 (2017).

    Article  Google Scholar 

  27. Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    Article  ADS  Google Scholar 

  28. Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    Article  ADS  Google Scholar 

  29. Yao, H. & Yang, F. Topological odd-parity superconductivity at type-II two-dimensional van Hove singularities. Phys. Rev. B 92, 035132 (2015).

    Article  ADS  Google Scholar 

  30. Shi, J. & Niu, Q. Attractive electron–electron interaction induced by geometric phase in a Bloch band. Preprint at https://arxiv.org/abs/cond-mat/0601531 (2006).

  31. Qin, S., Kim, J., Niu, Q. & Shih, C.-K. Superconductivity at the two-dimensional limit. Science 324, 1314–1317 (2009).

    Article  ADS  Google Scholar 

  32. Zhang, T. et al. Superconductivity in one-atomic-layer metal films grown on Si(111). Nat. Phys. 6, 104–108 (2010).

    Article  Google Scholar 

  33. Özer, M. M., Jia, Y., Zhang, Z., Thompson, J. R. & Weitering, H. H. Tuning the quantum stability and superconductivity of ultrathin metal alloys. Science 316, 1594–1597 (2007).

    Article  ADS  Google Scholar 

  34. Matetskiy, A. V. et al. Two-dimensional superconductor with a giant Rashba effect: one-atom-layer Tl–Pb compound on Si(111). Phys. Rev. Lett. 115, 147003 (2015).

    Article  ADS  Google Scholar 

  35. Hur, K. L. & Rice, T. M. Superconductivity close to the Mott state: from condensed-matter systems to superfluidity in optical lattices. Ann. Phys. 324, 1452–1515 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  36. Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2012).

    Article  Google Scholar 

  37. Nandkishore, R., Thomale, R. & Chubukov, A. V. Superconductivity from weak repulsion in hexagonal lattice systems. Phys. Rev. B 89, 144501 (2014).

    Article  ADS  Google Scholar 

  38. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  39. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2009).

    Article  ADS  Google Scholar 

  40. Cappelluti, E., Grimaldi, C. & Marsiglio, F. Topological change of the Fermi surface in low-density Rashba gases: application to superconductivity. Phys. Rev. Lett. 98, 167002 (2007).

    Article  ADS  Google Scholar 

  41. Murakawa, H. et al. Detection of Berry’s phase in a bulk Rashba semiconductor. Science 342, 1490–1493 (2013).

    Article  ADS  Google Scholar 

  42. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    Article  ADS  Google Scholar 

  43. Zhang, C., Tewari, S., Lutchyn, R. M. & Das Sarma, S. p x + ip y superfluid from s-wave interactions of fermionic cold atoms. Phys. Rev. Lett. 101, 160401 (2008).

    Article  ADS  Google Scholar 

  44. Mao, L., Shi, J., Niu, Q. & Zhang, C. Superconducting phase with a chiral f-wave pairing symmetry and Majorana fermions induced in a hole-doped semiconductor. Phys. Rev. Lett. 106, 157003 (2011).

    Article  ADS  Google Scholar 

  45. Shankar, R. Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129–192 (1994).

    Article  ADS  Google Scholar 

  46. Furukawa, N., Rice, T. M. & Salmhofer, M. Truncation of a two-dimensional Fermi surface due to quasiparticle gap formation at the saddle points. Phys. Rev. Lett. 81, 3195–3198 (1998).

    Article  ADS  Google Scholar 

  47. Metzner, W., Salmhofer, M., Honerkamp, C., Meden, V. & Schönhammer, K. Functional renormalization group approach to correlated fermion systems. Rev. Mod. Phys. 84, 299–352 (2012).

    Article  ADS  Google Scholar 

  48. Halboth, C. J. & Metzner, W. Renormalization-group analysis of the two-dimensional Hubbard model. Phys. Rev. B 61, 7364–7377 (2000).

    Article  ADS  Google Scholar 

  49. Kampf, A. P. & Katanin, A. A. Competing phases in the extended UV– J Hubbard model near the van Hove fillings. Phys. Rev. B 67, 125104 (2003).

    Article  ADS  Google Scholar 

  50. Millis, A. J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

    Article  ADS  Google Scholar 

  51. Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: mixed singlet–triplet state. Phys. Rev. Lett. 87, 037004 (2001).

    Article  ADS  Google Scholar 

  52. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grants nos 11634011 and 61434002), the National Key R&D Program of China (grant no. 2017YFA0303500), Anhui Initiative in Quantum Information Technologies (grant no. AHY170000) and the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDB30000000).

Author information

Authors and Affiliations

Authors

Contributions

Z.Y.Z. initiated and directed the project. W.Q. carried out the theoretical studies and analyses. L.Q.L. performed the first-principles calculations. W.Q. wrote the manuscript and Z.Y.Z. edited the manuscript.

Corresponding author

Correspondence to Zhenyu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional mathematical details; Supplementary Figures 1 to 6; Supplementary Tables 1 and 2; Supplementary references 1 to 12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, W., Li, L. & Zhang, Z. Chiral topological superconductivity arising from the interplay of geometric phase and electron correlation. Nat. Phys. 15, 796–802 (2019). https://doi.org/10.1038/s41567-019-0517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0517-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing