Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epstein–Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity

Abstract

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide-like (APOBEC) family of single-stranded DNA (ssDNA) cytosine deaminases provides innate immunity against virus and transposon replication1,2,3,4. A well-studied mechanism is APOBEC3G restriction of human immunodeficiency virus type 1, which is counteracted by a virus-encoded degradation mechanism1,2,3,4. Accordingly, most work has focused on retroviruses with obligate ssDNA replication intermediates and it is unclear whether large double-stranded DNA (dsDNA) viruses may be similarly susceptible to restriction. Here, we show that the large dsDNA herpesvirus Epstein–Barr virus (EBV), which is the causative agent of infectious mononucleosis and multiple cancers5, utilizes a two-pronged approach to counteract restriction by APOBEC3B. Proteomics studies and immunoprecipitation experiments showed that the ribonucleotide reductase large subunit of EBV, BORF26,7, binds APOBEC3B. Mutagenesis mapped the interaction to the APOBEC3B catalytic domain, and biochemical studies demonstrated that BORF2 stoichiometrically inhibits APOBEC3B DNA cytosine deaminase activity. BORF2 also caused a dramatic relocalization of nuclear APOBEC3B to perinuclear bodies. On lytic reactivation, BORF2-null viruses were susceptible to APOBEC3B-mediated deamination as evidenced by lower viral titres, lower infectivity and hypermutation. The Kaposi’s sarcoma-associated herpesvirus homologue, ORF61, also bound APOBEC3B and mediated relocalization. These data support a model where the genomic integrity of human γ-herpesviruses is maintained by active neutralization of the antiviral enzyme APOBEC3B.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EBV BORF2 interacts with cellular A3B.
Fig. 2: EBV BORF2 inhibits A3B catalytic activity specifically.
Fig. 3: BORF2 relocalizes A3B from the nuclear compartment to the endoplasmic reticulum.
Fig. 4: BORF2 functions to preserve EBV genome integrity from A3B.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding authors.

References

  1. Simon, V., Bloch, N. & Landau, N. R. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat. Immunol. 16, 546–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harris, R. S. & Dudley, J. P. APOBECs and virus restriction. Virology 479–480, 131–145 (2015).

    Article  PubMed  Google Scholar 

  3. Malim, M. H. & Emerman, M. HIV-1 accessory proteins: ensuring viral survival in a hostile environment. Cell Host Microbe 3, 388–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, B., Li, X., Lei, L. & Chen, J. APOBEC: from mutator to editor. J. Genet. Genomics 44, 423–437 (2017).

    Article  PubMed  Google Scholar 

  5. Rickinson, A. & Kieff, E. in Fields Virology (eds Fields, B. N. et al.) (Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, 2007).

  6. Whitehurst, C. B. et al. The Epstein–Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. J. Virol. 83, 4345–4353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lembo, D. & Brune, W. Tinkering with a viral ribonucleotide reductase. Trends Biochem. Sci. 34, 25–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Kraus, R. J. et al. Hypoxia-inducible factor-1α plays roles in Epstein–Barr virus’s natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathog. 13, e1006404 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hagemeier, S. R., Barlow, E. A., Kleman, A. A. & Kenney, S. C. The Epstein–Barr virus BRRF1 protein, Na, induces lytic infection in a TRAF2- and p53-dependent manner. J. Virol. 85, 4318–4329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verma, D., Thompson, J. & Swaminathan, S. Spironolactone blocks Epstein–Barr virus production by inhibiting EBV SM protein function. Proc. Natl Acad. Sci. USA 113, 3609–3614 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. LaRue, R. S. et al. Guidelines for naming nonprimate APOBEC3 genes and proteins. J. Virol. 83, 494–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Shi, K. et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat. Struct. Mol. Biol. 24, 131–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Starrett, G. J. et al. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis. Nat. Commun. 7, 12918 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takada, K. Cross-linking of cell surface immunoglobulins induces Epstein–Barr virus in Burkitt lymphoma lines. Int. J. Cancer 33, 27–32 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Borza, C. M. & Hutt-Fletcher, L. M. Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat. Med. 8, 594–599 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Bogerd, H. P. et al. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc. Natl Acad. Sci. USA 103, 8780–8785 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsai, M. H. et al. Spontaneous lytic replication and epitheliotropism define an Epstein–Barr virus strain found in carcinomas. Cell Rep. 5, 458–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Molesworth, S. J., Lake, C. M., Borza, C. M., Turk, S. M. & Hutt-Fletcher, L. M. Epstein–Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J. Virol. 74, 6324–6332 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suspène, R., Henry, M., Guillot, S., Wain-Hobson, S. & Vartanian, J. P. Recovery of APOBEC3-edited human immunodeficiency virus G->A hypermutants by differential DNA denaturation PCR. J. Gen. Virol. 86, 125–129 (2005).

    Article  PubMed  Google Scholar 

  21. Stenglein, M. D., Burns, M. B., Li, M., Lengyel, J. & Harris, R. S. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat. Struct. Mol. Biol. 17, 222–229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Géoui, T., Buisson, M., Tarbouriech, N. & Burmeister, W. P. New insights on the role of the gamma-herpesvirus uracil-DNA glycosylase leucine loop revealed by the structure of the Epstein–Barr virus enzyme in complex with an inhibitor protein. J. Mol. Biol. 366, 117–131 (2007).

    Article  PubMed  Google Scholar 

  23. Mol, C. D. et al. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82, 701–708 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Robbiani, D. F. & Nussenzweig, M. C. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. Annu. Rev. Pathol. 8, 79–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Kidd, J. M., Newman, T. L., Tuzun, E., Kaul, R. & Eichler, E. E. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet. 3, e63 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Suspène, R. et al. Genetic editing of herpes simplex virus 1 and Epstein–Barr herpesvirus genomes by human APOBEC3 cytidine deaminases in culture and in vivo. J. Virol. 85, 7594–7602 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sanjuán, R. & Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci. 73, 4433–4448 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Janini, M., Rogers, M., Birx, D. R. & McCutchan, F. E. Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4+ T cells. J. Virol. 75, 7973–7986 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, E. Y. et al. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection. PLoS Pathog. 10, e1004281 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hultquist, J. F. et al. Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J. Virol. 85, 11220–11234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stenglein, M. D. & Harris, R. S. APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J. Biol. Chem. 281, 16837–16841 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. LaRue, R. S., Lengyel, J., Jónsson, S. R., Andrésdóttir, V. & Harris, R. S. Lentiviral Vif degrades the APOBEC3Z3/APOBEC3H protein of its mammalian host and is capable of cross-species activity. J. Virol. 84, 8193–8201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lackey, L., Law, E. K., Brown, W. L. & Harris, R. S. Subcellular localization of the APOBEC3 proteins during mitosis and implications for genomic DNA deamination. Cell Cycle 12, 762–772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leonard, B. et al. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma. Cancer Res. 73, 7222–7231 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Leonard, B. et al. The PKC/NF-κB signaling pathway induces APOBEC3B expression in multiple human cancers. Cancer Res. 75, 4538–4547 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Law, E. K. et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci. Adv. 2, e1601737 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol. 12, 1035–1045 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salsman, J., Zimmerman, N., Chen, T., Domagala, M. & Frappier, L. Genome-wide screen of three herpesviruses for protein subcellular localization and alteration of PML nuclear bodies. PLoS Pathog. 4, e1000100 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jäger, S. et al. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 481, 371–375 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Salamango, D. J. & Johnson, M. C. Characterizing the murine leukemia virus envelope glycoprotein membrane-spanning domain for its roles in interface alignment and fusogenicity. J. Virol. 89, 12492–12500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Di Noia, J. & Neuberger, M. S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Albin, J. S., Hache, G., Hultquist, J. F., Brown, W. L. & Harris, R. S. Long-term restriction by APOBEC3F selects human immunodeficiency virus type 1 variants with restored Vif function. J. Virol. 84, 10209–10219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jagannathan, M. et al. A role for USP7 in DNA replication. Mol. Cell. Biol. 34, 132–145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Davis, Z. H. et al. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol. Cell 57, 349–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Shimizu, N., Yoshiyama, H. & Takada, K. Clonal propagation of Epstein–Barr virus (EBV) recombinants in EBV-negative Akata cells. J. Virol. 70, 7260–7263 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ni, Z., Olsen, J. B., Emili, A. & Greenblatt, J. F. Identification of mammalian protein complexes by lentiviral-based affinity purification and mass spectrometry. Methods Mol. Biol. 781, 31–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, G. et al. ProHits: integrated software for mass spectrometry-based interaction proteomics. Nat. Biotechnol. 28, 1015–1017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Refsland, E. W. et al. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res. 38, 4274–4284 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi, K., Carpenter, M. A., Kurahashi, K., Harris, R. S. & Aihara, H. Crystal structure of the DNA deaminase APOBEC3B catalytic domain. J. Biol. Chem. 290, 28120–28130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shaban, N. M. et al. The antiviral and cancer genomic DNA deaminase APOBEC3H is regulated by an RNA-mediated dimerization mechanism. Mol. Cell 69, 75–86.e79 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Cui, X. A., Zhang, H. & Palazzo, A. F. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol. 10, e1001336 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Borozan, I., Zapatka, M., Frappier, L. & Ferretti, V. Analysis of Epstein–Barr virus genomes and expression profiles in gastric adenocarcinoma. J. Virol. 92, pii: e01239-17 (2018).

    Article  Google Scholar 

  60. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Verhalen, B., Starrett, G. J., Harris, R. S. & Jiang, M. Functional upregulation of the DNA cytosine deaminase APOBEC3B by polyomaviruses. J. Virol. 90, 6379–6386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ebrahimi, D., Anwar, F. & Davenport, M. P. APOBEC3 has not left an evolutionary footprint on the HIV-1 genome. J. Virol. 85, 9139–9146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Anderson for technical advice and RT–qPCR data; Y.-F. Chiu for sharing BAC EBV B95.8; H.-J. Delecluse for M81-transformed B cells; K. Hogquist and S. Dunmire for providing the Akata cells; T. Ikeda and C. Richards for cell culture assistance; M. Sanders and staff at the University of Minnesota Imaging Center for assistance with fluorescence microscopy and live cell imaging; A. Serebrenik for the gRNA construct targeting UNG2; G. Starrett for technical programming advice; and R. Khanna, S. Rice, S. Simon, and P. Southern for thoughtful comments. This work was supported by NCI R21-CA206309 (R.S.H.), the University of Minnesota (College of Biological Sciences, Academic Health Center, and Masonic Cancer Center to R.S.H.), and Canadian Institutes of Health Research grant 153014 (to L.F.). National Institutes of Health training grants provided salary support for A.Z.C. (F30 CA200432 and T32 GM008244) and M.C.J. (T32 CA009138). Salary support for J.L.M. was provided by a National Science Foundation Graduate Research Fellowship. J.Y.M. was funded by Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación. L.F. is a tier 1 Canada Research Chair in Molecular Virology. R.S.H. is the Margaret Harvey Schering Land Grant Chair for Cancer Research, a Distinguished University McKnight Professor, and an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.Z.C., J.Y.-M., L.F. and R.S.H. conceived and designed the studies. A.Z.C. and J.Y-M. performed the bulk of the experimental work. N.M.-S., E.M. and J.G. carried out the AP-MS analyses. M.C.J., M.A.C., J.L.M., N.M.Sh. and W.L.B. provided technical training and advice. J.L.M. helped validate the BORF2-A3B interaction and M.A.C. performed the UDG experiments. A.Z.C., I.B., M.C.J. and D.E. conducted the bioinformatics analyses. A.Z.C., J.Y.-M., L.F. and R.S.H. drafted the manuscript, and all authors contributed to revisions.

Corresponding authors

Correspondence to Lori Frappier or Reuben S. Harris.

Ethics declarations

Competing interests

R.S.H. is a co-founder, shareholder, and consultant of ApoGen Biotechnologies Inc. The other authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–14, Raw Images and Supplementary Video legends.

Reporting Summary

Supplementary Video 1

3D-reconstruction of z-stacks show A3B–BORF2 aggregates colocalizing within the endoplasmic reticulum.

Supplementary Video 2

z-series of reactivated AGS-EBV cells show BORF2 colocalization within the endoplasmic reticulum.

Supplementary Video 3

Effect of BORF2 induction on pre-existing A3B in U2OS cells.

Supplementary Video 4

Effect of BORF2 on A3B induction in U2OS cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, A.Z., Yockteng-Melgar, J., Jarvis, M.C. et al. Epstein–Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity. Nat Microbiol 4, 78–88 (2019). https://doi.org/10.1038/s41564-018-0284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0284-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer