Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Behavioural clusters and predictors of performance during recovery from stroke

Subjects

Abstract

We examined the patterns and variability of post-stroke recovery in multiple behavioural domains. A large cohort of first-time stroke patients with heterogeneous lesions was studied prospectively and longitudinally at one to two weeks, three months and one year after the stroke using structural magnetic resonance imaging to measure lesion anatomy and 44 neuropsychological tests to assess behavioural outcomes. Impairment was described at all time points by a few clusters of correlated deficits. The time course and magnitude of recovery was similar across behavioural domains, with change scores largely proportional to the initial deficit and most recovery occurring within the first three months. Damage to specific white matter tracts produced poorer recovery for several domains: attention (superior longitudinal fasciculus II/III), language (posterior arcuate fasciculus) and motor (corticospinal tract). Finally, after accounting for the severity of the initial deficit, language and visual memory recovery was worse for those with lower levels of education, while the occurrence of multiple deficits negatively impacted attention recovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lesion anatomy.
Figure 2: Behavioural clusters.
Figure 3: Magnitude of recovery.
Figure 4: Time course of recovery.
Figure 5: Behaviour prediction on the basis of lesion topography.

Similar content being viewed by others

References

  1. Ringman, J. M., Saver, J. L., Woolson, R. F., Clarke, W. R. & Adams, H. P. Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology 63, 468–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Nys, G. M. S. et al. Cognitive disorders in acute stroke: prevalence and clinical determinants. Cerebrovasc. Dis. 23, 408–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Appelros, P., Karlsson, G. M., Seiger, A. & Nydevik, I. Neglect and anosognosia after first-ever stroke: incidence and relationship to disability. Acta Derm. Venereol. 34, 215–220 (2002).

    Article  Google Scholar 

  4. Buxbaum, L. J. et al. Hemispatial neglect: subtypes, neuroanatomy, and disability. Neurology 62, 749–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Rathore, S. S., Hinn, A. R., Cooper, L. S., Tyroler, H. A. & Rosamond, W. D. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke 33, 2718–2721 (2002).

    Article  PubMed  Google Scholar 

  6. Zandieh, A. et al. The underlying factor structure of National Institutes of Health Stroke Scale: an exploratory factor analysis. Int. J. Neurosci. 122, 140–144 (2011).

    Article  PubMed  Google Scholar 

  7. Lyden, P., Claesson, L., Havstad, S., Ashwood, T. & Lu, M. Factor analysis of the National Institutes of Health Stroke Scale in patients with large strokes. Arch. Neurol. 61, 1677–1680 (2004).

    Article  PubMed  Google Scholar 

  8. Corbetta, M. et al. Common behavioral clusters and subcortical anatomy in stroke. Neuron 85, 927–941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carter, A. R. et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann. Neurol. 67, 365–375 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang, Y., Chen, H., Gong, Q., Shen, S. & Gao, Q. Analysis of functional networks involved in motor execution and motor imagery using combined hierarchical clustering analysis and independent component analysis. Magn. Reson. Imaging 28, 653–660 (2010).

    Article  PubMed  Google Scholar 

  11. Urbin, M. A., Hong, X., Lang, C. E. & Carter, A. R. Resting-state functional connectivity and its association with multiple domains of upper-extremity function in chronic stroke. Neurorehab. Neural Re. 28, 761–769 (2014).

    Article  CAS  Google Scholar 

  12. Ovadia-Caro, S. et al. Longitudinal effects of lesions on functional networks after stroke. J. Cereb. Blood Flow Metab. 33, 1279–1285 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Meer, M. P. A. et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J. Neurosci. 30, 3964–3972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He, B. J. et al. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53, 905–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Baldassarre, A. et al. Large-scale changes in network interactions as a physiological signature of spatial neglect. Brain 137, 3267–3283 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Siegel, J. S. et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc. Natl Acad. Sci. USA 113, E4367–E4376 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Skilbeck, C. E., Wade, D. T., Hewer, R. L. & Wood, V. A. Recovery after stroke. J. Neurol. 46, 5–8 (1983).

    CAS  Google Scholar 

  18. Kotila, M., Waltimo, O., Niemi, M. L., Laaksonen, R. & Lempinen, M. The profile of recovery from stroke and factors influencing outcome. Stroke 15, 1039–1044 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Wade, D. T., Wood, V. A. & Hewer, R. L. Recovery after stroke—the first 3 months. J. Neurol. Neurosurg. Psychiatry 48, 7–13 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duncan, P. W. et al. Similar motor recovery of upper and lower extremities after stroke. Stroke 25, 1181–1188 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Stone, S. P., Patel, P., Greenwood, R. J. & Halligan, P. W. Measuring visual neglect in acute stroke and predicting its recovery: the visual neglect recovery index. J. Neurol. Neurosurg. Psychiatry 55, 431–436 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kertesz, A. & McCabe, P. Recovery patterns and prognosis in aphasia. Brain 100, 1–18 (1977).

    Article  PubMed  Google Scholar 

  23. Levine, D. N., Warach, J. D., Benowitz, L. & Calvanio, R. Left spatial neglect: effects of lesion size and premorbid brain atrophy on severity and recovery following right cerebral infarction. Neurology 36, 362–366 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Hendricks, H. T., van Limbeek, J., Geurts, A. C. & Zwarts, M. J. Motor recovery after stroke: a systematic review of the literature. Arch. Phys. Med. Rehabil. 83, 1629–1637 (2002).

    Article  PubMed  Google Scholar 

  25. Prabhakaran, S. et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehab. Neural Re. 22, 64–71 (2007).

    Article  Google Scholar 

  26. Lazar, R. M. et al. Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke 41, 1485–1488 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coupar, F., Pollock, A., Rowe, P., Weir, C. & Langhorne, P. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin. Rehabil. 26, 291–313 (2012).

    Article  PubMed  Google Scholar 

  28. Karnath, H.-O., Rennig, J., Johannsen, L. & Rorden, C. The anatomy underlying acute versus chronic spatial neglect: a longitudinal study. Brain 134, 903–912 (2011).

    Article  PubMed  Google Scholar 

  29. Rengachary, J., He, B. J., Shulman, G. L. & Corbetta, M. A behavioral analysis of spatial neglect and its recovery after stroke. Front. Hum. Neurosci. 5, 29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dronkers, N. F., Wilkins, D. P., Van Valin, R. D. Jr, Redfern, B. B. & Jaeger, J. J. Lesion analysis of the brain areas involved in language comprehension. Cognition 92, 145–177 (2004).

    Article  PubMed  Google Scholar 

  31. Lo, R., Gitelman, D., Levy, R., Hulvershorn, J. & Parrish, T. Identification of critical areas for motor function recovery in chronic stroke subjects using voxel-based lesion symptom mapping. Neuroimage 49, 9–18 (2010).

    Article  PubMed  Google Scholar 

  32. Schaechter, J. D. et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum. Brain Mapp. 30, 3461–3474 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Duncan, P. W., Goldstein, L. B., Matchar, D., Divine, G. W. & Feussner, J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 23, 1084–1089 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Nijboer, T. C. W., Kollen, B. J. & Kwakkel, G. The impact of recovery of visuo-spatial neglect on motor recovery of the upper paretic limb after stroke. PLoS ONE 9, e100584 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pedersen, P. M., Stig Jorgensen, H., Nakayama, H., Raaschou, H. O. & Olsen, T. S. Aphasia in acute stroke: incidence, determinants, and recovery. Ann. Neurol. 38, 659–666 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Sunderland, A. et al. Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J. Neurol. Neurosurg. Psychiatry 55, 530–535 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lövblad, K. O. et al. Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging correlate with clinical outcome. Ann. Neurol. 42, 164–170 (1997).

    Article  PubMed  Google Scholar 

  38. Winters, C., van Wegen, E. E. H., Daffertshofer, A. & Kwakkel, G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehab. Neural Re. 29, 614–622 (2015).

    Article  Google Scholar 

  39. Staff, R. T., Murray, A. D., Deary, I. J. & Whalley, L. J. What provides cerebral reserve? Brain 127, 1191–1199 (2004).

    Article  PubMed  Google Scholar 

  40. Perneczky, R., Diehl-Schmid, J., Pohl, C., Drzezga, A. & Kurz, A. Non-fluent progressive aphasia: cerebral metabolic patterns and brain reserve. Brain Res. 1133, 178–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. González-Fernández, M. et al. Formal education, socioeconomic status, and the severity of aphasia after stroke. Arch. Phys. Med. Rehabil. 92, 1809–1813 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Connor, L. T., Obler, L. K., Tocco, M., Fitzpatrick, P. M. & Albert, M. L. Effect of socioeconomic status on aphasia severity and recovery. Brain Lang. 78, 254–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Naeser, M. A. et al. Aphasia with predominantly subcortical lesion sites: description of three capsular/putaminal aphasia syndromes. Arch. Neurol. 39, 2–14 (1982).

    Article  CAS  PubMed  Google Scholar 

  44. Alexander, M. P., Naeser, M. A. & Palumbo, C. L. Correlations of subcorticalct lesion sites and aphasia profiles. Brain 110, 961–988 (1987).

    Article  PubMed  Google Scholar 

  45. Damasio, A. R. & Damasio, H. Brain and language. Sci. Am. 267, 88–95 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Ptak, R. & Schnider, A. The attention network of the human brain: relating structural damage associated with spatial neglect to functional imaging correlates of spatial attention. Neuropsychologia 49, 3063–3070 (2011).

    Article  PubMed  Google Scholar 

  47. Mort, D. J. et al. The anatomy of visual neglect. Brain 126, 1986–1997 (2003).

    Article  PubMed  Google Scholar 

  48. Rorden, C. & Karnath, H.-O. Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nat. Rev. Neurosci. 5, 813–819 (2004).

    Article  PubMed  Google Scholar 

  49. Karnath, H.-O. et al. Normalized perfusion MRI to identify common areas of dysfunction: patients with basal ganglia neglect. Brain 128, 2462–2469 (2005).

    Article  PubMed  Google Scholar 

  50. Husain, M. & Rorden, C. Non-spatially lateralized mechanisms in hemispatial neglect. Nat. Rev. Neurosci. 4, 26–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. De Schotten, M. T. et al. Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual ‘in vivo’ tractography dissection. Cereb. Cortex 24, 691–706 (2014).

    Article  Google Scholar 

  52. Doricchi, F., Thiebaut de Schotten, M., Tomaiuolo, F. & Bartolomeo, P. White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awareness. Cortex 44, 983–995 (2008).

    Article  PubMed  Google Scholar 

  53. Bartolomeo, P., Thiebaut de Schotten, M. & Doricchi, F. Left unilateral neglect as a disconnection syndrome. Cereb. Cortex 17, 2479–2490 (2007).

    Article  PubMed  Google Scholar 

  54. Carter, A. R. et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann. Neurol. 67, 365–375 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang, L. et al. Dynamic functional reorganization of the motor execution network after stroke. Brain 133, 1224–1238 (2010).

    Article  PubMed  Google Scholar 

  56. Ramsey, L. E. et al. Normalization of network connectivity in hemispatial neglect recovery. Ann. Neurol. 80, 127–141 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kwakkel, G., Kollen, B. & Twisk, J. Impact of time on improvement of outcome after stroke. Stroke 37, 2348–2353 (2006).

    Article  PubMed  Google Scholar 

  58. Murphy, T. H. & Corbett, D. Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10, 861–872 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Ge, S., Yang, C.-H., Hsu, K.-S., Ming, G.-L. & Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54, 559–566 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Biernaskie, J. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J. Neurosci. 24, 1245–1254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dromerick, A. W. et al. Critical periods after stroke study: translating animal stroke recovery experiments into a clinical trial. Front. Hum. Neurosci. 9, 1–13 (2015).

    Article  Google Scholar 

  62. Chollet, F. et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 10, 123–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Ng, K. L. et al. Fluoxetine maintains a state of heightened responsiveness to motor training Early after stroke in a mouse model. Stroke 46, 2951–2960 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fox, M. D., Halko, M. A., Eldaief, M. C. & Pascual-Leone, A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 62, 2232–2243 (2012).

    Article  PubMed  Google Scholar 

  65. Liew, S.-L., Santarnecchi, E., Buch, E. R. & Cohen, L. G. Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front. Hum. Neurosci. 8, 77–91 (2014).

    Article  Google Scholar 

  66. Siegel, J. S., Snyder, A. Z., Ramsey, L., Shulman, G. L. & Corbetta, M. The effects of hemodynamic lag on functional connectivity and behavior after stroke. J. Cereb. Blood Flow Metab. 36, 2162–2172 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors received funding from the following grants: R01 HD061117-05 and R01 NS095741 (M.C.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design by M.C., G.L.S., L.E.R. and C.E.L. Data acquisition was done by L.E.R and J.S.S. Analysis was done by L.E.R., J.S.S. and M.S. The manuscript was written by L.E.R., M.C. and G.L.S.

Corresponding author

Correspondence to L. E. Ramsey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–3 and Supplementary Tables 1–4 (PDF 501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramsey, L., Siegel, J., Lang, C. et al. Behavioural clusters and predictors of performance during recovery from stroke. Nat Hum Behav 1, 0038 (2017). https://doi.org/10.1038/s41562-016-0038

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-016-0038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing