Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global aromaticity at the nanoscale

Abstract

Aromaticity can be defined by the ability of a molecule to sustain a ring current when placed in a magnetic field. Hückel’s rule states that molecular rings with [4n + 2] π-electrons are aromatic, with an induced magnetization that opposes the external field inside the ring, whereas those with 4n π-electrons are antiaromatic, with the opposite magnetization. This rule reliably predicts the behaviour of small molecules, typically with fewer than 22 π-electrons (n = 5). It is not clear whether aromaticity has a size limit, or whether Hückel’s rule extends to much larger macrocycles. Here, we present evidence for global aromaticity in porphyrin nanorings with circuits of up to 162 π-electrons (n = 40); aromaticity is controlled by changing the constitution, oxidation state and conformation. Whenever a ring current is observed, its direction is correctly predicted by Hückel’s rule. The largest ring currents occur when the porphyrin units have fractional oxidation states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 1H NMR spectra of the aromatic and antiaromatic six-porphyrin nanoring template complexes in oxidation states 2+, 4+ and 6+.
Fig. 2: Magnetic shielding plotted in the xz plane perpendicular to the plane of the nanoring.
Fig. 3: Hückel behaviour in a template-bound eight-porphyrin ring.
Fig. 4: Ring currents in topologically distinct 12-porphyrin ring complexes.
Fig. 5: Summary of the shielding and deshielding of the trihexylsilyl groups across eight different nanorings.

Similar content being viewed by others

Data availability

All relevant data, including raw computational data from the NICS calculations as well as XYZ coordinates of calculated molecular geometries, are available within the paper and its Supplementary Information files. The NMR data are presented in detail in the main Supplementary Information file and are available upon reasonable request from the authors.

References

  1. Heckmann, A. & Lambert, C. Organic mixed-valence compounds: a playground for electrons and holes. Angew. Chem. Int. Ed. 51, 326–392 (2012).

    Article  CAS  Google Scholar 

  2. Tolbert, L. M. & Zhao, X. Beyond the cyanine limit: Peierls distortion and symmetry collapse in a polymethine dye. J. Am. Chem. Soc. 119, 3253–3258 (1997).

    Article  CAS  Google Scholar 

  3. Gieseking, R. L., Ravva, M. K., Coropceanu, V. & Brédas, J.-L. Benchmarking density functional theory approaches for the description of symmetry breaking in long polymethine dyes. J. Phys. Chem. C 120, 9975–9984 (2016).

    Article  CAS  Google Scholar 

  4. Lorke, A. et al. Spectroscopy of nanoscopic semiconductor rings. Phys. Rev. Lett. 84, 2223–2226 (2000).

    Article  CAS  Google Scholar 

  5. Spitler, E. L., Johnson, C. A. II & Haley, M. M. Renaissance of annulene chemistry. Chem. Rev. 106, 5344–5386 (2006).

    Article  CAS  Google Scholar 

  6. Soya, T., Kim, W., Kim, D. & Osuka, A. Stable [48]-, [50]-, and [52]dodecaphyrins(1.1.0.1.1.0.1.1.0.1.1.0): the largest Hückel aromatic molecules. Chem. Eur. J. 21, 8341–8346 (2015).

    Article  CAS  Google Scholar 

  7. Yoneda, T., Soya, T., Neya, S. & Osuka, A. [62]Tetradecaphyrin and its mono- and bis-ZnII complexes. Chem. Eur. J. 22, 14518–14522 (2016).

    Article  Google Scholar 

  8. Peeks, M. D., Claridge, T. D. W. & Anderson, H. L. Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 541, 200–203 (2017).

    Article  CAS  Google Scholar 

  9. Lu, X. et al. Fluorenyl based macrocyclic polyradicaloids. J. Am. Chem. Soc. 139, 13173–13183 (2017).

    Article  CAS  Google Scholar 

  10. Cha, W.-Y. et al. Bicyclic Baird-type aromaticity. Nat. Chem. 9, 1243–1248 (2017).

    Article  CAS  Google Scholar 

  11. Lu, X. et al. Global aromaticity in macrocyclic cyclopenta-fused tetraphenanthrenylene tetraradicaloid and its charged species. Angew. Chem. Int. Ed. 57, 13052–13056 (2018).

    Article  CAS  Google Scholar 

  12. Gregolińska, H. et al. Fully conjugated [4]chrysaorene. Redox-coupled anion binding in a tetraradicaloid macrocycle. J. Am. Chem. Soc. 140, 14474–14480 (2018).

    Article  Google Scholar 

  13. Ke, X.-S. et al. Three-dimensional fully conjugated carbaporphyrin cage. J. Am. Chem. Soc. 140, 16455–16459 (2018).

    Article  CAS  Google Scholar 

  14. Soya, T., Mori, H. & Osuka, A. Quadruply twisted Hückel-aromatic dodecaphyrin. Angew. Chem. Int. Ed. 57, 15882–15886 (2018).

    Article  CAS  Google Scholar 

  15. Li, G. et al. From open-shell singlet diradicaloid to closed-shell global antiaromatic macrocycles. Angew. Chem. Int. Ed. 57, 7166–7170 (2018).

    Article  CAS  Google Scholar 

  16. Liu, C. et al. Macrocyclic polyradicaloids with unusual super-ring structure and global aromaticity. Chem 4, 1586–1595 (2018).

    Article  CAS  Google Scholar 

  17. Peeks, M. D., Jirasek, M., Claridge, T. D. W. & Anderson, H. L. Global aromaticity and antiaromaticity in porphyrin nanoring anions. Angew. Chem. Int. Ed. 58, 15717–15720 (2019).

    Article  CAS  Google Scholar 

  18. Peeks, M. D. et al. Aromaticity and antiaromaticity in the excited states of porphyrin nanorings. J. Phys. Chem. Lett. 10, 2017–2022 (2019).

    Article  CAS  Google Scholar 

  19. Fokin, A. A., Jiao, H. & v. R. Schleyer, P. From dodecahedrapentaene to the “[n]trannulenes”. A new in-plane aromatic family. J. Am. Chem. Soc. 120, 9364–9365 (1998).

    Article  CAS  Google Scholar 

  20. Burley, G. A. Trannulenes with “in-plane” aromaticity: candidates for harvesting light energy. Angew. Chem. Int. Ed. 44, 3176–3178 (2005).

    Article  CAS  Google Scholar 

  21. Rickhaus, M. et al. Single-acetylene linked porphyrin nanorings. J. Am. Chem. Soc. 139, 16502–16505 (2017).

    Article  CAS  Google Scholar 

  22. Haver, R. et al. Tuning the circumference of six-porphyrin nanorings. J. Am. Chem. Soc. 141, 7965–7971 (2019).

    Article  CAS  Google Scholar 

  23. Gershoni-Poranne, R. & Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 44, 6597–6615 (2015).

    Article  CAS  Google Scholar 

  24. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & v. R. Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    Article  CAS  Google Scholar 

  25. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  26. Henderson, T. M., Izmaylov, A. F., Scalmani, G. & Scuseria, G. E. Can short-range hybrids describe long-range-dependent properties? J. Chem. Phys. 131, 044108 (2009).

    Article  Google Scholar 

  27. O’Sullivan, M. C. et al. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469, 72–75 (2011).

    Article  Google Scholar 

  28. Herges, R. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106, 4820–4842 (2006).

    Article  CAS  Google Scholar 

  29. Stepien, M., Sprutta, N. & Latos-Grazynski, L. Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids. Angew. Chem. Int. Ed. 50, 4288–4340 (2011).

    Article  CAS  Google Scholar 

  30. Wirz, L. N., Dimitrova, M., Fliegel, H. & Sundholm, D. Magnetically induced ring-current strengths in Möbius twisted annulenes. J. Phys. Chem. Lett. 9, 1627–1632 (2018).

    Article  CAS  Google Scholar 

  31. Senthilkumar, K. et al. Lemniscular [16]cycloparaphenylene: a radially conjugated figure-eight aromatic molecule. J. Am. Chem. Soc. 141, 7421–7427 (2019).

    Article  CAS  Google Scholar 

  32. Fuller, F. B. The writhing number of a space curve. Proc. Natl Acad. Sci. USA 68, 815–819 (1971).

    Article  CAS  Google Scholar 

  33. Rappaport, S. M. & Rzepa, H. S. Intrinsically chiral aromaticity. Rules incorporating linking number, twist, and writhe for higher-twist Möbius annulenes. J. Am. Chem. Soc. 130, 7613–7619 (2008).

    Article  CAS  Google Scholar 

  34. Schaller, G. R. & Herges, R. Möbius molecules with twists and writhes. Chem. Commun. 49, 1254–1260 (2013).

    Article  CAS  Google Scholar 

  35. Kondratuk, D. V. et al. Vernier-templated synthesis, crystal structure, and supramolecular chemistry of a 12-porphyrin nanoring. Chem. Eur. J. 20, 12826–12834 (2014).

    Article  CAS  Google Scholar 

  36. Edwards, P. P., Lodge, M. T. J., Hensel, F. & Redmer, R. A metal conducts and a non-metal doesn’t. Phil. Trans. R. Soc. A 368, 941–965 (2010).

    Article  CAS  Google Scholar 

  37. Hückel, E. Quantentheoretische Beiträge zum Benzolproblem I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z. Phys. 70, 204–286 (1931).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the EPSRC (grants EP/N017188/1, EP/R029229/1 and EP/M016110/1), the ERC (grant 320969), the European Union’s Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant SYNCHRONICS 643238) and the Swiss National Science Foundation (P300P2_174294) for funding, the National Mass Spectrometry Facility at Swansea University for MALDI mass spectra, the University of Oxford Advanced Research Computing Service (https://doi.org/10.5281/zenodo.22558) and the Australian-government-supported National Computational Infrastructure (NCI) for the provision of high-performance computing. M.J. thanks Oxford University for a Scatcherd European Scholarship. H.G. thanks the Carlsberg Foundation for a Carlsberg Foundation Internationalisation Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.R., M.J., L.T., H.G., M.D.P., R.H. and H.-W.J. synthesized the compounds; M.R. and M.J. collected and analysed the NMR spectroscopic data; M.J. and M.D.P. performed the DFT calculations; T.D.W.C. assisted with NMR data collection and interpretation; H.L.A., M.R. and M.J. devised the project and wrote the paper; all authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Harry L. Anderson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Details of experimental procedures, computational methods, synthetic schemes, NMR spectra, electrochemical data and results of DFT calculations testing a range of functionals.

XYZ coordinates

34 XYZ data files. A full set of calculated Cartesian coordinates for each nanoring in a range of oxidation states.

NICS values

42 data files in comma-separated-values (csv) format. The NICSs are organized into five columns, indicating x, y, z coordinates and the corresponding isotropic and zz NICS values (presented as the corresponding chemical shielding values from DFT NMR calculations multiplied by −1). The x, y, z coordinates use the same origin and orientation as the geometries provided in *.xyz files. The NICSs were calculated on structures that were optimized in the presence of templates, but from which the templates were removed before the NICS calculations. The DFT method used for the NICS calculations was LC-ωhPBE (ω = 0.1)/6-31G*. The names of the files indicate the species. For example, NICS for the 8-porphyrin nanoring with all-butadiyne linkers in the 4+ oxidation state, that is, c-P8[b8]4+, are stored in the file named ‘c-P8[B8]_4.csv’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rickhaus, M., Jirasek, M., Tejerina, L. et al. Global aromaticity at the nanoscale. Nat. Chem. 12, 236–241 (2020). https://doi.org/10.1038/s41557-019-0398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0398-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing