Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Planar three-coordinate iron sulfide in a synthetic [4Fe-3S] cluster with biomimetic reactivity

Abstract

Iron–sulfur clusters are emerging as reactive sites for the reduction of small-molecule substrates. However, the four-coordinate iron sites of typical iron–sulfur clusters rarely react with substrates, implicating three-coordinate iron. This idea is untested because fully sulfide-coordinated three-coordinate iron is unprecedented. Here we report a new type of [4Fe-3S] cluster that features an iron centre with three bonds to sulfides, and characterize examples of the cluster in three oxidation levels using crystallography, spectroscopy, and ab initio calculations. Although a high-spin electronic configuration is characteristic of other iron–sulfur clusters, the three-coordinate iron centre in these clusters has a surprising low-spin electronic configuration due to the planar geometry and short Fe-S bonds. In a demonstration of biomimetic reactivity, the [4Fe-3S] cluster reduces hydrazine, a natural substrate of nitrogenase. The product is the first example of NH2 bound to an iron–sulfur cluster. Our results demonstrate that three-coordinate iron supported by sulfide donors is a plausible precursor to reactivity in iron–sulfur clusters like the FeMoco of nitrogenase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and relevance of a series of [4Fe-3S] clusters with trigonal planar iron.
Fig. 2: Structural analogy between [4Fe-3S] and the FeMoco.
Fig. 3: Spectroscopy of three-coordinate [4Fe-3S] clusters and amide-coordinated product 4 gives insight into electronic structures.
Fig. 4: Calculated ligand-field splitting diagram of iron sites in all-ferrous [4Fe-3S][K] (3).
Fig. 5: [4Fe-3S] reactivity with hydrazine and characterization of Fe–NH2 product.

Similar content being viewed by others

Data availability

X-ray crystallographic data have been deposited in the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/) with deposition numbers 1879376 ([4Fe-3S][K]), 1879377 ([4Fe-3S][K]2), 1879378 ([4Fe-3S][K]3), 18793769 ([4Fe-3S][Rb]), 1879380 ([4Fe-3S][Rb]2), 1879381 ([4Fe-3S][Cs]), 1879382 ([4Fe-3S][Cs]2) and 1879383 ([4Fe-3S][K]-NH2). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other characterization data and experimental methods are provided in this article and its Supplementary Information. Data are also available from the corresponding author on request.

References

  1. Beinert, H., Holm, R. H. & Munck, E. Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277, 653–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, S. C., Lo, W. & Holm, R. H. Developments in the biomimetic chemistry of cubane-type and higher nuclearity iron–sulfur clusters. Chem. Rev. 114, 3579–3600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Venkateswara Rao, P. & Holm, R. H. Synthetic analogues of the active sites of iron–sulfur proteins. Chem. Rev. 104, 527–560 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bill, E. Iron–sulfur clusters—new features in enzymes and synthetic models. Hyperfine Interact. 205, 139–147 (2012).

    Article  CAS  Google Scholar 

  5. Deng, L. & Holm, R. H. Stabilization of fully reduced iron–sulfur clusters by carbene ligation: the [FenSn]0 oxidation levels (n = 4, 8). J. Am. Chem. Soc. 130, 9878–9886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moula, G., Matsumoto, T., Miehlich, M. E., Meyer, K. & Tatsumi, K. Synthesis of an all-ferric cuboidal iron–sulfur cluster [Feiii 4S4(SAr)4]. Angew. Chem. Int. Ed. 57, 11594–11597 (2018).

    Article  CAS  Google Scholar 

  7. Albers, A. et al. A super-reduced diferrous [2Fe-2S] cluster. J. Am. Chem. Soc. 135, 1704–1707 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Ohki, Y., Ikagawa, Y. & Tatsumi, K. Synthesis of new [8Fe-7S] clusters: a topological link between the core structures of P-cluster, FeMo-co, and FeFe-co of nitrogenases. J. Am. Chem. Soc. 129, 10457–10465 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y. G. & Holm, R. H. Synthesis of a molecular Mo2Fe6S9 cluster with the topology of the P–N cluster of nitrogenase by rearrangement of an edge-bridged Mo2Fe6S8 double cubane. J. Am. Chem. Soc. 125, 3910–3920 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Holm, R. H. & Lo, W. Structural conversions of synthetic and protein-bound iron–sulfur clusters. Chem. Rev. 116, 13685–13713 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Wittenborn, E. C. et al. Redox-dependent rearrangements of the NiFeS cluster of carbon monoxide dehydrogenase. eLife 7, e39451 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fritsch, J. et al. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron–sulphur centre. Nature 479, 249–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Shomura, Y., Yoon, K.-S., Nishihara, H. & Higuchi, Y. Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 479, 253–256 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Berkovitch, F., Nicolet, Y., Wan, J. T., Jarrett, J. T. & Drennan, C. L. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303, 76–79 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sippel, D. et al. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359, 1484–1489 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Yao, W., Gurubasavaraj, P. M. & Holland, P. L. All-ferrous iron–sulfur clusters. Struct. Bonding 160, 1–37 (2014).

    CAS  Google Scholar 

  17. Sickerman, N. S. et al. Reduction of C1 substrates to hydrocarbons by the homometallic precursor and synthetic mimic of the nitrogenase cofactor. J. Am. Chem. Soc. 139, 603–606 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Tanifuji, K. et al. Structure and reactivity of an asymmetric synthetic mimic of nitrogenase cofactor. Angew. Chem. Int. Ed. 55, 15633–15636 (2016).

    Article  CAS  Google Scholar 

  19. Tard, C. et al. Synthesis of the H-cluster framework of iron-only hydrogenase. Nature 433, 610–613 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Holland, P. L. Electronic structure and reactivity of three-coordinate iron complexes. Acc. Chem. Res. 41, 905–914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron–molybdenum cofactor. Science 334, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940–940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spatzal, T., Perez, K. A., Einsle, O., Howard, J. B. & Rees, D. C. Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase. Science 345, 1620–1623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vela, J., Stoian, S., Flaschenriem, C. J., Münck, E. & Holland, P. L. A sulfido-bridged diiron(ii) compound and its reactions with nitrogenase-relevant substrates. J. Am. Chem. Soc. 126, 4522–4523 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez, M. M. et al. Isolation and characterization of stable iron(i) sulfide complexes. Angew. Chem. Int. Ed. 51, 8247–8250 (2012).

    Article  CAS  Google Scholar 

  27. MacLeod, K. C., Vinyard, D. J. & Holland, P. L. A multi-iron system capable of rapid N2 formation and N2 cleavage. J. Am. Chem. Soc. 136, 10226–10229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strop, P. et al. Crystal structure of the all-ferrous [4Fe-4S]0 form of the nitrogenase iron protein from Azotobacter vinelandii. Biochemistry 40, 651–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Tsou, C.-C., Lin, Z.-S., Lu, T.-T. & Liaw, W.-F. Transformation of dinitrosyl iron complexes [(NO)2Fe(SR)2] (R = Et, Ph) into [4Fe-4S] clusters [Fe4S4(SPh)4]2−: relevance to the repair of the nitric oxide-modified ferredoxin [4Fe-4S] clusters. J. Am. Chem. Soc. 130, 17154–17160 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Ting-Wah Chu, C., Yip-Kwai Lo, F. & Dahl, L. F. Synthesis and stereochemical analysis of the [Fe4(NO)4(μ 3-S)4]n series (n = 0, −1) which possesses a cubanelike Fe4S4 core: direct evidence for the antibonding tetrametal character of the unpaired electron upon a one-electron reduction of a completely bonding tetrahedral metal cluster. J. Am. Chem. Soc. 104, 3409–3422 (1982).

    Article  CAS  Google Scholar 

  31. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The cambridge structural database. Acta Crystallogr. B 72, 171–179 (2016).

    Article  CAS  Google Scholar 

  32. Hagen, K. S., Watson, A. D. & Holm, R. H. Synthetic routes to iron sulfide (Fe2S2, Fe3S4, Fe4S4, and Fe6S9), clusters from the common precursor tetrakis(ethanethiolate)ferrate(2–) ion ([Fe(SC2H5)4]2–): structures and properties of [Fe3S4(SR)4]3– and bis(ethanethiolate)nonathioxohexaferrate(4–) ion ([Fe6S9(SC2H5)2]4–), examples of the newest types of Fe–S–SR clusters. J. Am. Chem. Soc. 105, 3905–3913 (1983).

    Article  CAS  Google Scholar 

  33. Osterloh, F. et al. Synthesis and characterization of neutral hexanuclear iron sulfur clusters containing stair-like [Fe6(μ 3-S)4(μ 2-SR)4] and nest-like [Fe6(μ 3-S)2(μ 2-S)2(μ 4-S)(μ 2-SR)4] core structures. Inorg. Chem. 37, 3581–3587 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. MacDonnell, F. M., Ruhlandt-Senge, K., Ellison, J. J., Holm, R. H. & Power, P. P. Sterically encumbered iron(ii) thiolate complexes: synthesis and structure of trigonal planar [Fe(SR)3] (R = 2,4,6-t-Bu3C6H2) and Mössbauer spectra of two- and three-coordinate complexes. Inorg. Chem. 34, 1815–1822 (1995).

    Article  CAS  Google Scholar 

  35. Yang, L., Powell, D. R. & Houser, R. P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ 4. Dalton Trans. 955–964 (2007).

  36. Angove, H. C., Yoo, S. J., Burgess, B. K. & Münck, E. Mössbauer and EPR evidence for an all-ferrous Fe4S4 cluster with S = 4 in the Fe protein of nitrogenase. J. Am. Chem. Soc. 119, 8730–8731 (1997).

    Article  CAS  Google Scholar 

  37. Leggate, E. J., Bill, E., Essigke, T., Ullmann, G. M. & Hirst, J. Formation and characterization of an all-ferrous Rieske cluster and stabilization of the [2Fe-2S]0 core by protonation. Proc. Natl Acad. Sci. USA 101, 10913–10918 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gütlich, P., Eckhard, B. & Trautwein, A. X. Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications (Springer, 2011).

  39. Atanasov, M., Ganyushin, D., Sivalingam, K. & Neese, F. A modern first-principles view on ligand field theory through the eyes of correlated multireference wavefunctions. Struct. Bond. 143, 149–220 (2010).

    Article  CAS  Google Scholar 

  40. Gebhard, M. S. et al. Single-crystal spectroscopic studies of Fe(SR)4 2– (R = 2-(Ph)C6H4): electronic structure of the ferrous site in rubredoxin. J. Am. Chem. Soc. 113, 1640–1649 (1991).

    Article  CAS  Google Scholar 

  41. Figgis, B. N. & Hitchman, M. A. Ligand Field Theory and its Applications (Wiley-VCH, 2000).

  42. Anderson, J. S. & Peters, J. C. Low‐spin pseudotetrahedral iron(i) sites in Fe2(μ‐S) complexes. Angew. Chem. Int. Ed. 53, 5978–5981 (2014).

    Article  CAS  Google Scholar 

  43. Carpino, L. A. et al. Synthesis, characterization, and thermolysis of 7-amino-7-azabenzonorbornadienes. J. Org. Chem. 53, 2565–2572 (1988).

    Article  CAS  Google Scholar 

  44. Fox, D. J. & Bergman, R. G. Synthesis of a first-row transition metal parent amido complex and carbon monoxide insertion into the amide N–H bond. J. Am. Chem. Soc. 125, 8984–8985 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Anderson, J. S., Moret, M.-E. & Peters, J. C. Conversion of Fe–NH2 to Fe–N2 with release of NH3. J. Am. Chem. Soc. 135, 534–537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Creutz, S. E. P. & Peters, J. C. Exploring secondary-sphere interactions in Fe–NxHy complexes relevant to N2 fixation. Chem. Sci. 8, 2321–2328 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Kiernicki, J. J., Zeller, M. & Szymczak, N. K. Hydrazine capture and N–N bond cleavage at iron enabled by flexible appended Lewis acids. J. Am. Chem. Soc. 139, 18194–18197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goh, C., Weigel, J. A. & Holm, R. H. The [2:2] site-differentiated clusters [Fe4S4L2(RNC)6] containing two low-spin iron(ii) sites. Inorg. Chem. 33, 4861–4868 (1994).

    Article  CAS  Google Scholar 

  49. Doan, P. E. et al. 57Fe ENDOR spectroscopy and ‘electron inventory’ analysis of the nitrogenase E4 intermediate suggest the metal-ion core of FeMo-cofactor cycles through only one redox couple. J. Am. Chem. Soc. 133, 17329–17340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barney, B. M. et al. Intermediates trapped during nitrogenase reduction of NN, CH3–NNH, and H2N–NH2. J. Am. Chem. Soc. 127, 14960–14961 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Lukoyanov, D. et al. ENDOR/HYSCORE studies of the common intermediate trapped during nitrogenase reduction of N2H2, CH3N2H, and N2H4 support an alternating reaction pathway for N2 reduction. J. Am. Chem. Soc. 133, 11655–11664 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Crossland, J. L. & Tyler, D. R. Iron–dinitrogen coordination chemistry: dinitrogen activation and reactivity. Coord. Chem. Rev. 254, 1883–1894 (2010).

    Article  CAS  Google Scholar 

  53. Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron–potassium complex. Science 334, 780–783 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (GM065313 to P.L.H.), the Max Planck Society (E.B., S.D. and F.N.) and IMPRS-RECHARGE (C.V.S.). We thank A. Göbels for measurement of superconducting quantum interference device data and G. Brudvig, G. Banerjee, D. Suess and A. Speelman for help with EPR spectroscopy. We thank C. Cummins and W. Transue for insightful conversations and the gift of Carpino’s hydrazine. Elemental analysis data were measured at the CENTC Elemental Analysis Facility at the University of Rochester, funded by the NSF (CHE-0650456), and we thank W. Brennessel for collecting these data. XAS spectra were measured at SSRL 9-3 and ESRF ID-26 and we thank M. Latimer and B. Detlefs for their assistance during measurements. Use of SSRL is supported by the DOE, BES (DE-AC02-76SF00515). The SSRL SMB programme is supported by DOE, BER and NIH (including P41GM103393).

Author information

Authors and Affiliations

Authors

Contributions

D.E.D. performed the synthetic experiments, and collected and analysed spectroscopic data. B.Q.M. and D.E.D. collected and interpreted crystallographic data. C.V.S. and S.D. collected and interpreted the X-ray absorption data. V.G.C. and F.N. performed and interpreted the computational and theoretical aspects. E.B. performed superconducting quantum interference device and magnetic Mössbauer measurements and analyses. P.L.H. supervised the research and D.E.D. and P.L.H. wrote the manuscript.

Corresponding author

Correspondence to Patrick L. Holland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeRosha, D.E., Chilkuri, V.G., Van Stappen, C. et al. Planar three-coordinate iron sulfide in a synthetic [4Fe-3S] cluster with biomimetic reactivity. Nat. Chem. 11, 1019–1025 (2019). https://doi.org/10.1038/s41557-019-0341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0341-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing