Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis and reactivity of precolibactin 886

Abstract

The clb gene cluster encodes the biosynthesis of metabolites known as precolibactins and colibactins. The clb pathway is found in gut commensal Escherichia coli, and clb metabolites are thought to initiate colorectal cancer via DNA crosslinking. Here we report confirmation of the structural assignment of the complex clb product precolibactin 886 via a biomimetic synthetic pathway. We show that an α-ketoimine linear precursor undergoes spontaneous cyclization to precolibactin 886 on HPLC purification. Studies of this α-ketoimine and the related α-dicarbonyl revealed that these compounds are unexpectedly susceptible to nucleophilic cleavage under mildly basic conditions. This cleavage pathway forms other known clb metabolites or biosynthetic intermediates and explains the difficulties in isolating fully mature biosynthetic products. This cleavage also accounts for a recently identified colibactin–adenine adduct. The colibactin peptidase ClbP deacylates synthetic precolibactin 886 to form a non-genotoxic pyridone, which suggests precolibactin 886 lies off the path of the major biosynthetic route.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of (pre)colibactin reactivity, mechanism of genotoxicity and the synthetic strategy pursued herein.
Fig. 2: Synthesis of the azide 20 and the amino alcohol 9.
Fig. 3: Synthesis of precolibactin 886 (1) and reactivity of the α-ketoimine and α-dicarbonyl residues.
Fig. 4: The α-ketoimine 2 undergoes transformation to known clb metabolites or biosynthetic intermediates under mild conditions, and ClbP deacylation of precolibactin 886 (1) forms the non-genotoxic pyridone 35.
Fig. 5: Biosynthetic and chemical reactivity model based on the studies reported herein.

Similar content being viewed by others

Data availability

All the relevant data are available from the authors and/or are included with the manuscript and Supplementary Information.

References

  1. Nougayrède, J.-P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).

    Article  Google Scholar 

  2. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    Article  CAS  Google Scholar 

  3. Buc, E. et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE 8, e56964 (2013).

    Article  CAS  Google Scholar 

  4. Trautman, E. P. & Crawford, J. M. Linking biosynthetic gene clusters to their metabolites via pathway-targeted molecular networking. Curr. Top. Med. Chem. 16, 1–12 (2015).

    Google Scholar 

  5. Balskus, E. P. Colibactin: understanding an elusive gut bacterial genotoxin. Nat. Prod. Rep. 32, 1534–1540 (2015).

    Article  CAS  Google Scholar 

  6. Taieb, F., Petit, C., Nougayrede, J. P. & Oswald, E. The enterobacterial genotoxins: Cytolethal distending toxin and colibactin. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0008-2016 (2016).

  7. Healy, A. R. & Herzon, S. B. Molecular basis of gut microbiome-associated colorectal cancer: a synthetic perspective. J. Am. Chem. Soc. 139, 14817–14824 (2017).

    Article  CAS  Google Scholar 

  8. Faïs, T., Delmas, J., Barnich, N., Bonnet, R. & Dalmasso, G. Colibactin: more than a new bacterial toxin. Toxins 10, 151 (2018).

    Article  Google Scholar 

  9. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    Article  CAS  Google Scholar 

  10. Li, Z. R. et al. Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin. Nat. Chem. Biol. 12, 773–775 (2016).

    Article  CAS  Google Scholar 

  11. Trautman, E. P., Healy, A. R., Shine, E. E., Herzon, S. B. & Crawford, J. M. Domain-targeted metabolomics delineates the heterocycle assembly steps of colibactin biosynthesis. J. Am. Chem. Soc. 139, 4195–4201 (2017).

    Article  CAS  Google Scholar 

  12. Brachmann, A. O. et al. Colibactin biosynthesis and biological activity depend on the rare aminomalonyl polyketide precursor. Chem. Commun. 51, 13138–13141 (2015).

    Article  CAS  Google Scholar 

  13. Zha, L., Wilson, M. R., Brotherton, C. A. & Balskus, E. P. Characterization of polyketide synthase machinery from the pks island facilitates isolation of a candidate precolibactin. ACS Chem. Biol. 11, 1287–1295 (2016).

    Article  CAS  Google Scholar 

  14. Li, Z.-R. et al. Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. Preprint at bioRxiv https://doi.org/10.1101/530204 (2019).

  15. Dubois, D. et al. ClbP is a prototype of a peptidase subgroup involved in biosynthesis of nonribosomal peptides. J. Biol. Chem. 286, 35562–35570 (2011).

    Article  CAS  Google Scholar 

  16. Cougnoux, A. et al. Analysis of structure–function relationships in the colibactin-maturating enzyme ClbP. J. Mol. Biol. 424, 203–214 (2012).

    Article  CAS  Google Scholar 

  17. Brotherton, C. A. & Balskus, E. P. A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity. J. Am. Chem. Soc. 135, 3359–3362 (2013).

    Article  CAS  Google Scholar 

  18. Bian, X. et al. In vivo evidence for a prodrug activation mechanism during colibactin maturation. Chembiochem 14, 1194–1197 (2013).

    Article  CAS  Google Scholar 

  19. Vizcaino, M. I., Engel, P., Trautman, E. & Crawford, J. M. Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules. J. Am. Chem. Soc. 136, 9244–9247 (2014).

    Article  CAS  Google Scholar 

  20. Guntaka, N. S., Healy, A. R., Crawford, J. M., Herzon, S. B. & Bruner, S. D. Structure and functional analysis of ClbQ, an unusual intermediate-releasing thioesterase from the colibactin biosynthetic pathway. ACS Chem. Biol. 12, 2598–2608 (2017).

    Article  CAS  Google Scholar 

  21. Patonay, T. & Hoffman, R. V. Base-promoted reactions of α-azido ketones with aldehydes and ketones: a novel entry to α-azido-β-hydroxy ketones and 2,5-dihydro-5-hydroxyoxazoles. J. Org. Chem. 60, 2368–2377 (1995).

    Article  CAS  Google Scholar 

  22. Healy, A. R., Nikolayevskiy, H., Patel, J. R., Crawford, J. M. & Herzon, S. B. A mechanistic model for colibactin-induced genotoxicity. J. Am. Chem. Soc. 138, 15563–15570 (2016).

    Article  CAS  Google Scholar 

  23. Shine, E. E. et al. Model colibactins exhibit human cell genotoxicity in the absence of host bacteria. ACS Chem. Biol. 13, 3286–3293 (2018).

    Article  CAS  Google Scholar 

  24. Xue, M., Shine, E., Wang, W., Crawford, J. M. & Herzon, S. B. Characterization of natural colibactin–nucleobase adducts by tandem mass spectrometry and isotopic labeling. Support for DNA alkylation by cyclopropane ring opening. Biochemistry 57, 6391–6394 (2018).

    Article  CAS  Google Scholar 

  25. Wilson, M. R. et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363, eaar7785 (2019).

    Article  Google Scholar 

  26. Healy, A. R., Vizcaino, M. I., Crawford, J. M. & Herzon, S. B. Convergent and modular synthesis of candidate precolibactins. Structural revision of precolibactin A. J. Am. Chem. Soc. 138, 5426–5432 (2016).

    Article  CAS  Google Scholar 

  27. Seashore-Ludlow, B., Torssell, S. & Somfai, P. Addition of azomethine ylides to aldehydes: mechanistic dichotomy of differentially substituted α-imino esters. Eur. J. Org. Chem. 2010, 3927–3933 (2010).

    Article  Google Scholar 

  28. Lou, S., Ramirez, A. & Conlon, D. A. Catalytic syn-selective direct aldol reactions of benzophenone glycine imine with aromatic, heteroaromatic and aliphatic aldehydes. Adv. Synth. Catal. 357, 28–34 (2015).

    Article  CAS  Google Scholar 

  29. Alper, P. B., Hung, S.-C. & Wong, C.-H. Metal catalyzed diazo transfer for the synthesis of azides from amines. Tetrahedron Lett. 37, 6029–6032 (1996).

    Article  CAS  Google Scholar 

  30. Nyffeler, P. T., Liang, C.-H., Koeller, K. M. & Wong, C.-H. The chemistry of amine–azide interconversion: catalytic diazotransfer and regioselective azide reduction. J. Am. Chem. Soc. 124, 10773–10778 (2002).

    Article  CAS  Google Scholar 

  31. Goddard-Borger, E. D. & Stick, R. V. An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org. Lett. 9, 3797–3800 (2007).

    Article  CAS  Google Scholar 

  32. Edwards, O. E. & Purushothaman, K. K. Some reactions of alicyclic α-azidoketones. Can. J. Chem. 42, 712–716 (1964).

    Article  CAS  Google Scholar 

  33. Faiz, S. et al. Synthesis and consecutive reactions of alpha-azido ketones: a review. Molecules 20, 14699–14745 (2015).

    Article  CAS  Google Scholar 

  34. Dess, D. B. & Martin, J. C. A useful 12-I-5 triacetoxyperiodinane (the Dess–Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc. 113, 7277–7287 (1991).

    Article  CAS  Google Scholar 

  35. Vizcaino, M. I. & Crawford, J. M. The colibactin warhead crosslinks DNA. Nat. Chem. 7, 411–417 (2015).

    Article  CAS  Google Scholar 

  36. Li, Z. R. et al. Critical intermediates reveal new biosynthetic events in the enigmatic colibactin pathway. Chembiochem 16, 1715–1719 (2015).

    Article  CAS  Google Scholar 

  37. White, M. J. & Leeper, F. J. Kinetics of the thiazolium ion-catalyzed benzoin condensation. J. Org. Chem. 66, 5124–5131 (2001).

    Article  CAS  Google Scholar 

  38. Kim, T. & Spiegel, D. A. The unique reactivity of N-phenacyl-derived thiazolium salts toward α-dicarbonyl compounds. Rejuvenation Res 16, 43–50 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Spiegel for helpful discussions regarding the mechanism of the hydrolytic cleavage of 2. Financial support from the National Institutes of Health (R01GM110506 to S.B.H., 1DP2-CA186575 to J.M.C. and R01CA215553 to S.B.H. and J.M.C.), the Chemistry Biology Interface Training Program (T32GM067543 to K.M.W.), the Charles H. Revson foundation (postdoctoral fellowship to A.R.H.) and Yale University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

A.R.H., K.M.W. and N.R.L. carried out the synthetic experiments. C.S.K. conducted the purification of precolibactin 886 (1) and ClbP deacylation studies. S.B.H. and J.M.C. oversaw the project. S.B.H. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jason M. Crawford or Seth B. Herzon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Supplementary Tables 1 and 2, Supplementary synthetic procedures and characterization data (1H, 13C NMR, IR, HRMS) for all new compounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Healy, A.R., Wernke, K.M., Kim, C.S. et al. Synthesis and reactivity of precolibactin 886. Nat. Chem. 11, 890–898 (2019). https://doi.org/10.1038/s41557-019-0338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0338-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing