Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

COSY catalyses transcis isomerization and lactonization in the biosynthesis of coumarins

Abstract

Coumarins, also known as 1,2-benzopyrones, comprise a large class of secondary metabolites that are ubiquitously found throughout the plant kingdom. In many plant species, coumarins are particularly important for iron acquisition and plant defence. Here, we show that COUMARIN SYNTHASE (COSY) is a key enzyme in the biosynthesis of coumarins. Arabidopsis thaliana cosy mutants have strongly reduced levels of coumarin and accumulate o-hydroxyphenylpropanoids instead. Accordingly, cosy mutants have reduced iron content and show growth defects when grown under conditions in which there is a limited availability of iron. Recombinant COSY is able to produce umbelliferone, esculetin and scopoletin from their respective o-hydroxycinnamoyl-CoA thioesters by two reaction steps—a transcis isomerization followed by a lactonization. This conversion happens partially spontaneously and is catalysed by light, which explains why the need for an enzyme for this conversion has been overlooked. The combined results show that COSY has an essential function in the biosynthesis of coumarins in organs that are shielded from light, such as roots. These findings provide routes to improving coumarin production in crops or by microbial fermentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Revised coumarin biosynthetic pathway in Arabidopsis displaying metabolic shifts in the cosy mutants.
Fig. 2: Enzymatic activity of COSY.
Fig. 3: cosy mutants are sensitive to media or soil with reduced iron bioavailability.

Similar content being viewed by others

Data availability

The raw chromatograms of the phenolic profiling experiment of cosy-1, cosy-2 and wild-type roots are available from the MetaboLights database repository37 as study MTBLS692. The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Sun, H. et al. Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. J. Exp. Bot. 65, 4305–4315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gnonlonfin, G. J. B., Sanni, A. & Brimer, L. Review scopoletin—a coumarin phytoalexin with medicinal properties. Crit. Rev. Plant Sci. 31, 47–56 (2012).

    Article  CAS  Google Scholar 

  3. Chong, J. et al. Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell 14, 1093–1107 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stringlis, I. A. et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl Acad. Sci. USA 115, E5213–E5222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rodríguez-Celma, J. & Schmidt, W. Reduction-based iron uptake revisited: on the role of secreted iron-binding compounds. Plant Signal Behav. 8, e26116 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schmid, N. B. et al. Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol. 164, 160–172 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt, H. et al. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS ONE 9, e102444 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Siwinska, J. et al. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. J. Exp. Bot. 69, 1735–1748 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsai, H.-H. et al. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiol. 177, 194–207 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rajniak, J. et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 14, 442–450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsumoto, S., Mizutani, M., Sakata, K. & Shimizu, B.-I. Molecular cloning and functional analysis of the ortho-hydroxylases of p-coumaroyl coenzyme A/feruloyl coenzyme A involved in formation of umbelliferone and scopoletin in sweet potato, Ipomoea batatas (L.) Lam. Phytochemistry 74, 49–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Vialart, G. et al. A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2′-hydroxylase activity (C2′H): a missing step in the synthesis of umbelliferone in plants. Plant J. 70, 460–470 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Kai, K. et al. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J. 55, 989–999 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Karamat, F. et al. CYP98A22, a phenolic ester 3′-hydroxylase specialized in the synthesis of chlorogenic acid, as a new tool for enhancing the furanocoumarin concentration in Ruta graveolens. BMC Plant Biol. 12, 152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tuominen, L. K., Johnson, V. E. & Tsai, C.-J. Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues. BMC Genom. 12, 236 (2011).

    Article  CAS  Google Scholar 

  16. Vanholme, R. et al. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341, 1103–1106 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Vanholme, R. et al. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24, 3506–3529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, X.-H., Gou, J.-Y. & Liu, C.-J. BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression. Plant Mol. Biol. 70, 421–442 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Schmid, M. et al. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37, 501–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Ahn, Y. O. et al. Scopolin-hydrolyzing β-glucosidases in roots of Arabidopsis. Plant Cell Physiol. 51, 132–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Dorey, S. et al. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol. Plant Microbe Interact. 10, 646–655 (1997).

    Article  CAS  Google Scholar 

  22. Beuerle, T. & Pichersky, E. Enzymatic synthesis and purification of aromatic coenzyme A esters. Anal. Biochem. 302, 305–312 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Levsh, O. et al. Dynamic conformational states dictate selectivity toward the native substrate in a substrate-permissive acyltransferase. Biochemistry 55, 6314–6326 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Walker, A. M. et al. Elucidation of the structure and reaction mechanism of sorghum hydroxycinnamoyltransferase and its structural relationship to other coenzyme A-dependent transferases and synthases. Plant Physiol. 162, 640–651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, X., Koepke, J., Panjikar, S., Fritzsch, G. & Stöckigt, J. Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J. Biol. Chem. 280, 13576–13583 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Rodríguez-Celma, J. et al. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol. 162, 1473–1485 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fourcroy, P. et al. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol. 201, 155–167 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Rizhsky, L., Liang, H. & Mittler, R. The water-water cycle is essential for chloroplast protection in the absence of stress. J. Biol. Chem. 278, 38921–38925 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, S.-M., Shim, G. Y., Kim, B.-G. & Ahn, J.-H. Biological synthesis of coumarins in Escherichia coli. Microb. Cell Fact. 14, 65 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lin, Y., Sun, X., Yuan, Q. & Yan, Y. Combinatorial biosynthesis of plant-specific coumarins in bacteria. Metab. Eng. 18, 69–77 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Kuromori, T. et al. A collection of 11 800 single-copy Ds transposon insertion lines in Arabidopsis. Plant J. 37, 897–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Ito, T. et al. A new resource of locally transposed Dissociation elements for screening gene-knockout lines in silico on the Arabidopsis genome. Plant Physiol. 129, 1695–1699 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sundaresan, V. et al. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–1810 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Shimada, T. L., Shimada, T. & Hara-Nishimura, I. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 61, 519–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Ramakers, C., Ruijter, J. M., Deprez, R. H. L. & Moorman, A. F. M. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. & Scheible, W.-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kale, N. S. et al. MetaboLights: an open-access database repository for metabolomics data. Curr. Protoc. Bioinform. 53, 14.13.11–14.13.18 (2016).

    Article  Google Scholar 

  38. R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2017).

  39. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  40. Rao, G. K., Gowda, N. B. & Ramakrishna, R. A. Raney nickel–catalyzed hydrogenation of unsaturated carboxylic acids with sodium borohydride in water. Synth. Commun. 42, 893–904 (2012).

    Article  CAS  Google Scholar 

  41. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 241 (2009).

    Article  CAS  Google Scholar 

  43. Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

    Article  CAS  Google Scholar 

  44. Guex, N., Peitsch, M. C. & Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30, S162–S173 (2009).

    Article  PubMed  Google Scholar 

  45. Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hiscox, J. D. & Israelstam, G. F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57, 1332–1334 (1979).

    Article  CAS  Google Scholar 

  48. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huson, D. H. et al. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform. 8, 460 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bleys for help with preparing the manuscript. We acknowledge funding through the framework of the IWT-SBO (project ARBOREF), the Hercules program of Ghent University for the Synapt Q-Tof (grant no. AUGE/014), the Bijzonder Onderzoeksfonds-Zware Apparatuur of Ghent University for the FT-ICR-MS instrument (174PZA05) and the Multidisciplinary Research Partnership Biotechnology for a Sustainable Economy (01MRB510W) of Ghent University. R.V. was supported by the Research Foundation—Flanders with a postdoctoral fellowship; L.S., L.H. and B.D.M. by the Agency for Innovation by Science and Technology, Flanders (IWT-Vlaanderen); and X.L. and J.L. by the China Scholarship Council. H.K. and J.R. were funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-SC0018409) and research in the Schmidt laboratory was supported by MoST.

Author information

Authors and Affiliations

Authors

Contributions

R.V., L.S., W.S. and W.B. designed the experiments. R.V., L.S., K.C.S., H.K., X.L., B.D.M., L.H., J.L., G.G., H.-H.T. and K.M. performed experiments. R.V., L.S., G.G., K.M., J.H., B.V., H.-H.T. and J.R. collected and analysed data; R.V. and W.B. wrote the manuscript with the help of all of the authors.

Corresponding author

Correspondence to Wout Boerjan.

Ethics declarations

Competing interests

A patent (Belgium Patent publication no: WO 2018/046526 Al) for the use of COSY for the production of coumarins in plants and microorganisms has been published.

Additional information

Peer review information: Nature Plants thanks Chang Jun Liu and Jing Ke Weng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, legend of Supplementary Table 1, Supplementary Tables 2 and 3, Supplementary Table 4 legend, Supplementary Tables 5 and 6.

Reporting Summary

Supplementary Tables 1 and 4

Supplementary Table 1: a full list of peaks detected in the root extracts of cosy-1 and cosy-2. Supplementary Table 4: a full list of peaks detected in the inflorescence stem extracts of cosy-1 and cosy-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanholme, R., Sundin, L., Seetso, K.C. et al. COSY catalyses transcis isomerization and lactonization in the biosynthesis of coumarins. Nat. Plants 5, 1066–1075 (2019). https://doi.org/10.1038/s41477-019-0510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0510-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing