Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Direct (hetero)arylation polymerization: toward defect-free conjugated polymers

Abstract

In a very short time, direct (hetero)arylation polymerization (DHAP) has established itself as a valuable and atom-economical alternative to traditional cross-coupling methods such as the Migita–Stille and Suzuki-Miyaura polymerizations for the synthesis of low cost and efficient conjugated polymers for organic electronics. Because of sustained research efforts combining in-depth theoretical calculations, the development of new ligands and the careful fine-tuning of polymerization conditions, selectivity and reactivity issues should be soon a thing of the past. This focus review highlights the recent advances that lead to defect-free polymeric semiconductors and conductors and the current limitations and challenges of DHAP as it moves toward simultaneously becoming an industrially feasible, environmentally friendly, and synthetically powerful polymerization technique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7

Similar content being viewed by others

References

  1. Boudreault P-LT, Najari A, Leclerc M. Processable low bandgap polymers for photovoltaic applications. Chem Mater. 2011;23:456–69.

    CAS  Google Scholar 

  2. Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem Rev. 2018;118:3447–507.

    CAS  PubMed  Google Scholar 

  3. Wang G, Melkonyan FS, Facchetti A, Marks TJ. All-polymer solar cells: recent progress, challenges, and prospects. Angew Chem Int Ed. 2019;58:4129–42.

    CAS  Google Scholar 

  4. Yuan J, Zhang Y, Zhou L, Zhang G, Yip H-L, Lau T-K, et al. Single junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule. 2019;3:1140–51.

    CAS  Google Scholar 

  5. Dubey N, Leclerc M. Conducting polymers: efficient thermoelectric materials. J Polym Sci Part B. 2011;49:467–75.

    CAS  Google Scholar 

  6. Petsagkourakis I, Tybrandt K, Crispin X, Ohkubo I, Satoh N, Mori T. Thermoelectric materials and applications for energy harvesting power generation. Sc Technol Adv Mater. 2018;19:836–62.

    CAS  Google Scholar 

  7. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, et al. Electroluminescence in conjugated polymers. Nature. 1999;397:121–8.

    CAS  Google Scholar 

  8. Beaupré S, Boudreault P-LT, Leclerc M. Solar energy production and energy efficient lighting: photovoltaic devices and white light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole) and poly(2,7-dibenzosilole) derivatives. Adv Mater. 2010;22:E6–27.

    PubMed  Google Scholar 

  9. Kraft A, Grimsdale AC, Holmes AB. Electroluminescent conjugated polymers–seeing polymers in a new light. Angew Chem Int Ed. 1998;37:402–28.

    Google Scholar 

  10. Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett. 1996;69:4108–10.

    CAS  Google Scholar 

  11. Facchetti A. Semiconductors for organic transistors. Mater Today. 2007;10:28–37.

    CAS  Google Scholar 

  12. Sirringhaus H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater. 2014;26:1319–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Facchetti A. π-Conjugated polymers for organic electronics and photovoltaic cell application. Chem Mater. 2011;23:733–58.

    CAS  Google Scholar 

  14. Ho HA, Najari A, Leclerc M. Optical detection of DNA and proteins with cationic polythiophenes. Acc Chem Res. 2008;41:168–78.

    CAS  PubMed  Google Scholar 

  15. Moon J-M, Thapliyal N, Hussain KK, Goyal RN, Shim Y-B. Conducting polymer-based electrochemical biosensors for neurotransmitters: a review. Biosens Bioel. 2018;102:540–52.

    CAS  Google Scholar 

  16. Thomas SW, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev. 2007;107:1339–86.

    CAS  PubMed  Google Scholar 

  17. Beaupré S, Dumas J, Leclerc M. Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers. Chem Mater. 2006;18:4011–8.

    Google Scholar 

  18. Beaupré S, Breton A-C, Dumas J, Leclerc M. Multicolored electrochromic cells based on Poly(2,7-carbazole) derivatives for adaptative camouflage. Chem Mater. 2009;21:1504–13.

    Google Scholar 

  19. Savagian LR, Österholm AM, Shen DE, Christiansen DT, Kuepfert M, Reynolds JR. Conjugated polymer blends for high contrast black-to-transmissive electrochromism. Adv Opt Mater. 2018;6:1800594.

    Google Scholar 

  20. Dyer AL, Thompson EJ, Reynolds JR. Completing the color palette with spray-processable polymer electrochromics. ACS Appl Mater Interfaces. 2011;3:1787–95.

    CAS  PubMed  Google Scholar 

  21. Suzuki A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds. Angew Chem Int Ed. 2011;50:6723–37.

    Google Scholar 

  22. Milstein D, Stille JK. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J Am Chem Soc. 1978;100:3636–8.

    CAS  Google Scholar 

  23. Tamao K, Sumitami K, Kumada M. Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J Am Chem Soc. 1972;94:4374–6.

    CAS  Google Scholar 

  24. Negishi E. Magical power of transition metals: past, present, and future. Angew Chem Int Ed. 2011;50:6738–64.

    CAS  Google Scholar 

  25. Heck RF, Nolley JP. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem. 1972;37:2320–2.

    CAS  Google Scholar 

  26. Chauvin Y. Olefin metathesis: the early days. Angew Chem Int Ed. 2006;45:3741–7.

    CAS  Google Scholar 

  27. Schrock RR. Multiple metal-carbon bonds for catalytic metathesis reactions. Angew Chem Int Ed. 2006;45:3748–59.

    CAS  Google Scholar 

  28. Grubbs RH. Olefin-metathesis catalysts for the preparation of molecules and materials. Angew Chem Int Ed. 2006;45:3760–5.

    CAS  Google Scholar 

  29. Ziegler K, Holzkamp E, Breil H, Martin H. The Mulheim normal pressure polyethylene process. Angew Chem. 1955;67:541–7.

    CAS  Google Scholar 

  30. Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, et al. Crystalline high polymers of α-olefins. J Am Chem Soc. 1955;77:1708–10.

    CAS  Google Scholar 

  31. Morin P-O, Bura T, Leclerc M. Realizing the full potential of conjugated polymers: innovation in polymer synthesis. Mater Horiz. 2016;3:11–20.

    CAS  Google Scholar 

  32. Alberico D, Scott ME, Lautens M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem Rev. 2007;107:174–238.

    CAS  PubMed  Google Scholar 

  33. Lyons TW, Sanford MS. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem Rev. 2010;110:1147–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ackermann L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem Rev. 2011;111:1315–45.

    CAS  PubMed  Google Scholar 

  35. Schipper DJ, Fagnou K. Direct arylation as a synthetic tool for the synthesis of thiophene-based organic electronic materials. Chem Mater. 2011;23:1594–1600.

    CAS  Google Scholar 

  36. Wencel-Delord J, Glorius F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat Chem. 2013;5:369–75.

    CAS  PubMed  Google Scholar 

  37. Berrouard P, Najari A, Pron A, Gendron D, Morin P-O, Pouliot J-R, et al. Synthesis of a 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based copolymer via direct heteroarylation. Angew Chem Int Ed. 2012;51:2068–71.

    CAS  Google Scholar 

  38. Wang Q, Takita R, Kikuzaki Y, Ozawa F. Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene). J Am Chem Soc. 2010;132:11420–1.

    CAS  PubMed  Google Scholar 

  39. Lu W, Kuwabara J, Kanbara T. Polycondensation of dibromofluorene analogues with tetrafluorobenzene via direct arylation. Macromolecules. 2011;44:1252–5.

    CAS  Google Scholar 

  40. Pouliot J-R, Grenier F, Blaskovits T, Beaupré S, Leclerc M. Direct (Hetero)arylation polymerization: simplicity for conjugated polymers synthesis. Chem Rev. 2016;116:14225–74.

    CAS  PubMed  Google Scholar 

  41. Facchetti A, Vaccaro L, Marrocchi A. Semiconducting polymers prepared by direct arylation polycondensation. Angew Chem Int Ed. 2012;51:3520–3.

    CAS  Google Scholar 

  42. Cordovilla C, Bartolome C, Martinez-Ilarduya JM, Espinet P. The Stille reaction, 38 years later. ACS Catal. 2015;5:3040–53.

    CAS  Google Scholar 

  43. Kiriy A, Senkovskyy V, Sommer M. Kumada catalyst-transfer polycondensation: mechanism, opportunities, and challenges. Macromol Rapid Commun. 2011;32:1503–17.

    CAS  PubMed  Google Scholar 

  44. Huo S, Mroz R, Carroll J. Negishi coupling in the synthesis of advanced electronic, optical, electrochemical, and magnetic materials. Org Chem Front. 2015;2:416–45.

    CAS  Google Scholar 

  45. Sakamoto J, Rehahn M, Wegner G, Schlüter AD. Suzuki Polycondensation: Polyarylenes à la Carte. Macromol Rapid Comun. 2009;30:653–87.

    CAS  Google Scholar 

  46. Pirotte G, Verstappen P, Vanderzande D, Maes W. On the “True” structure of push–pull-type low-bandgap polymers for organic electronics. Adv Electron Mater. 2018;4:1700481.

    Google Scholar 

  47. Fujinami Y, Kuwabara J, Lu W, Hayashi H, Kanbara T. Synthesis of thiophene- and bithiophene-based alternating copolymers via Pd-catalyzed direct C-H arylation. ACS Macro Lett. 2012;1:67–70.

    CAS  Google Scholar 

  48. Rehahn M, Schluter AD, Wegner G, Feast WJ. Soluble poly(para-phenylene)s. 2. Improved synthesis of poly(para-2,5-di-n-hexylphenylene) via Pd-catalysed coupling of 4-bromo-2,5-di-n-hexylbenzeneboronic acid. Polymer. 1989;30:1060–2.

    CAS  Google Scholar 

  49. Ranger M, Rondeau D, Leclerc M. New well-defined poly(2,7-fluorene) derivatives: photoluminescence and base doping. Macromolecules. 1997;30:7686–91.

    CAS  Google Scholar 

  50. Morin J-F, Leclerc M, Adès D, Siove A. Polycarbazoles: 25 years of progress. Macromol Rapid Commun. 2005;26:761–78.

    Google Scholar 

  51. Stalder R, Mei J, Graham KR, Estrada LA, Reynolds JR. Isoindigo, a versatile electron-deficient unit for high-performance organic electronics. Chem Mater. 2014;26:664–78.

    CAS  Google Scholar 

  52. Morin P-O, Bura T, Sun B, Gorelsky SI, Li Y, Leclerc M. Conjugated Polymers à la Carte from Time-Controlled Direct (Hetero) Arylation Polymerization. ACS Macro Lett. 2015;4:21–4.

    CAS  Google Scholar 

  53. Grenier F, Aïch RB, Lai Y-Y, Guérette M, Holmes A, Tao Y, et al. Electroactive and photoactive poly[Isoindigo-alt-EDOT] synthesized using direct (hetero)arylation polymerization in batch and in continuous flow. Chem Mater. 2015;27:2137–43.

    CAS  Google Scholar 

  54. Guérette M, Najari A, Maltais J, Pouliot J-R, Dufresne S, Simoneau M, et al. New processable phenanthridinone-based polymers for organic solar cell applications. Adv Energy Mater. 2016;6:1502094.

    Google Scholar 

  55. Matsidik R, Giorgio M, Luzio A, Caironi M, Komber H, Sommer M. A defect-free naphthalene diimide bithiazole copolymer via regioselective direct arylation polycondensation. Eur J Org Chem 2018;2018:6121–6.

    CAS  Google Scholar 

  56. Robitaille A, Jenekhe SA, Leclerc M. Poly(naphthalene diimide-alt-bithiophene) prepared by direct (hetero)arylation polymerization for efficient all-polymer solar cells. Chem Mater. 2018;30:5353–61.

    CAS  Google Scholar 

  57. Yuan J, Zhang Y, Zhou L, Zhang C, Lau T-K, Zhang G, et al. Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high performance organic solar cells. Adv Mater. 2019;31:1807577.

    Google Scholar 

  58. Bura T, Blaskovits JT, Leclerc M. Direct (hetero)arylation polymerization: trends and perspectives. J Am Chem Soc. 2016;138:10056–71.

    CAS  PubMed  Google Scholar 

  59. Rudenko AE, Wiley CA, Tannaci JF, Thompson BC. Optimization of direct arylation polymerization conditions for the synthesis of poly(3-hexylthiophene). J Polym Sci Part A. 2013;51:2660–8.

    CAS  Google Scholar 

  60. Okamoto K, Zhang J, Housekeeper JB, Marder SR, Luscombe CK. C−H arylation reaction: atom efficient and greener syntheses of π-conjugated small molecules and macromolecules for organic electronic materials. Macromolecules. 2013;46:8059–78.

    CAS  Google Scholar 

  61. Wang QF, Wakioka M, Ozawa F. Synthesis of end-capped regioregular poly(3-hexylthiophene)s via direct arylation. Macromol Rapid Commun. 2012;33:1203–7.

    PubMed  Google Scholar 

  62. Pouliot J-R, Wakioka M, Ozawa F, Li Y, Leclerc M. Structural analysis of poly(3-hexylthiophene) prepared via direct heteroarylation polymerization. Macromol Chem Phys. 2016;217:1493–1500.

    CAS  Google Scholar 

  63. Suraru S-L, Lee JA, Luscombe CK. Preparation of an aurylated alkythiophene monomer via C-H activation for use in Pd-PEPPSI-iPR catalysed-controlled chain growth polymerization. ACS Macro Lett. 2016;5:533–6.

    CAS  Google Scholar 

  64. Lee JA, Luscombe CK. Dual-catalytic Ag-Pd system for direct arylation polymerization to synthesize poly(3-hexylthiophene). ACS Macro Lett. 2018;7:767–71.

    CAS  Google Scholar 

  65. Jeffries-El M, Sauvé G, McCullough RD. Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified grignard metathesis reaction. Macromolecules. 2005;38:10346–52.

    CAS  Google Scholar 

  66. Bura T, Morin P-O, Leclerc M. En route to defect-free polythiophene derivatives by direct heteroarylation polymerization. Macromolecules. 2015;48:5614–20.

    CAS  Google Scholar 

  67. Dudnik AS, Aldrich TJ, Eastham ND, Chang RPH, Facchetti A, Marks TJ. Tin-free direct C−H arylation polymerization for high photovoltaic efficiency conjugated copolymers. J Am Chem Soc. 2016;138:15699–709.

    CAS  PubMed  Google Scholar 

  68. Carsten B, He F, Son HJ, Xu T, Yu L. Stille polycondensation for synthesis of functional materials. Chem Rev. 2011;111:1493–528.

    CAS  PubMed  Google Scholar 

  69. Marzano G, Kotowski D, Badubri F, Musio R, Pellegrino A, Luzzati S, et al. Tin-free synthesis of a ternary random copolymer for BHJ solar cells: direct (hetero)arylation versus stille polymerization. Macromolecules. 2015;48:7039–48.

    CAS  Google Scholar 

  70. Hendsbee AD, Li Y. Performance comparisons of polymer semiconductors synthesized by direct (hetero)arylation polymerization (DHAP) and conventional methods for organic thin film transistors and organic photovoltaics. Molecules. 2018;23:1255.

    PubMed Central  Google Scholar 

  71. Brouwer F, Developing Suitable Polymer Semiconductors for the Application in BioFETs. Zernike Institute PhD thesis series 2011–21, ISBN 978-90-367-5130-8.

  72. Neo WT, Ye Q, Shi Z, Chua S-J, Xu J. Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrolopyrrole-based conjugated polymers. Mater Chem Front. 2018;2:331–7.

    CAS  Google Scholar 

  73. Hong W, Chen S, Sun B, Arnould MA, Meng Y, Li Y. Is a polymer semiconductor having a “Perfect” regular structure desirable for organic thin film transistors? Chem Sci. 2015;6:3225–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Marzano G, Carulli F, Babudri F, Pellegrino A, Po R, Luzzati S, et al. PBDTTPD for plastic solar cells via Pd(PPh3)4-catalyzed direct (hetero)arylation polymerization. J Mater Chem A. 2016;4:17163–70.

    CAS  Google Scholar 

  75. Hendriks KH, Gaël HL, van Pruissen GWP, Wienk MM, Janssen RAJ. Homocoupling defects in diketopyrrolopyrrole-based copolymers and their effect on photovoltaic performance. J Am Chem Soc. 2014;136:11128–33.

    CAS  PubMed  Google Scholar 

  76. Pouliot J-R, Sun B, Leduc M, Najari A, Li Y, Leclerc M. A high mobility DPP-based polymer obtained via direct(hetero)arylation polymerization. Polym Chem. 2015;6:278–82.

    CAS  Google Scholar 

  77. Guo C, Quinn J, Sun B, Li Y. Dramatically different charge transport properties of bisthienyl diketopyrrolopyrrole-bithiazole copolymers synthesized via two direct (hetero)arylation polymerization routes. Polym Chem. 2016;7:4515–24.

    CAS  Google Scholar 

  78. Bura T, Beaupré S, Légaré M-A, Quinn J, Rochette E, Blaskovits JT, et al. Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers. Chem Sci. 2017;8:3913–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gobalasingham NS, Thompson BC. Direct arylation polymerization: a guide to optimal conditions for effective conjugated polymers. Prog Polym Sci. 2018;83:135–201.

    CAS  Google Scholar 

  80. Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RPH, et al. Suppressing defect formation pathways in the direct C–H arylation polymerization of photovoltaic copolymers. Macromolecules. 2018;51:9140–55.

    CAS  Google Scholar 

  81. Wakioka M, Ozawa F. Highly efficient catalysts for direct arylation polymerization (DArP). Asian J Org Chem. 2018;7:1206–16.

    CAS  Google Scholar 

  82. Iizuka E, Wakioka M, Ozawa F. Mixed-ligand approach to palladium-catalyzed direct arylation polymerization: effective prevention of structural defects using diamines. Macromolecules. 2016;49:3310–7.

    CAS  Google Scholar 

  83. Blaskovits JT, Johnson PA, Leclerc M. Mechanistic origin of β-defect formation in thiophene-based polymers prepared by direct (hetero)arylation. Macromolecules. 2018;51:8100–13.

    CAS  Google Scholar 

  84. Ni Z, Wang H, Dong H, Dang Y, Zhao Q, Zhang X, et al. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nat Chem. 2019;11:271–7.

    CAS  PubMed  Google Scholar 

  85. Wang X, Wang M. Synthesis of donor–acceptor conjugated polymers based on benzo[1,2-b:4,5-b]dithiophene and 2,1,3-benzothiadiazole via direct arylation polycondensation: towards efficient C–H activation in nonpolar solvents. Polym Chem. 2014;5:5784–92.

    CAS  Google Scholar 

  86. Kuwabara J, Yamazaki K, Yamagata T, Tsuchida W, Kanbara T. The effect of a solvent on direct arylation polycondensation of substituted thiophenes. Polym Chem. 2015;6:891–5.

    CAS  Google Scholar 

  87. Matsidik R, Komber H, Sommer M. Rational use of aromatic solvents for direct arylation polycondensation: C−H reactivity versus solvent quality. ACS Macro Lett. 2015;4:1346–50.

    CAS  Google Scholar 

  88. Bura T, Beaupré S, Ibraikulov OA, Légaré M-A, Quinn J, Lévêque P, et al. New fluorinated dithienyldiketopyrrolopyrrole monomers and polymers for organic electronics. Macromolecules. 2017;50:7080–90.

    CAS  Google Scholar 

  89. Roy C, Bura T, Beaupré S, Légaré M-A, Sun J-P, Hill IG, et al. Fluorinated thiophene-based synthons: polymerization of 1,4- dialkoxybenzene and fluorinated dithieno-2,1,3-benzothiadiazole by direct heteroarylation. Macromolecules. 2017;50:4658–67.

    CAS  Google Scholar 

  90. Gobalasingham NS, Pankow RM, Thompson BC. Synthesis of random poly(hexyl thiophene-3- carboxylate) copolymers via oxidative direct arylation polymerization (oxi-DArP). Polym Chem. 2017;8:1963–71.

    CAS  Google Scholar 

  91. Guo Q, Wu D, You J. Oxidative direct arylation polymerization using oxygen as the sole oxidant: facile, green access to bithiazole-based polymers. ChemSusChem. 2016;9:2765–8.

    CAS  PubMed  Google Scholar 

  92. Aoki H, Saito H, Shimoyama Y, Kuwabara J, Yasuda T, Kanbara T. Synthesis of conjugated polymers containing octafluorobiphenylene unit via Pd-catalyzed cross-dehydrogenative-coupling reaction. ACS Macro Lett. 2018;7:90–4.

    CAS  Google Scholar 

  93. Josse P, Dayneko S, Zhang Y, Dabos-Seignon S, Zhang S, Blanchard P, et al. Direct (hetero)arylation polymerization of a spirobifluorene and a dithienyl-diketopyrrolopyrrole derivative: new donor polymers for organic solar cells. Molecules. 2018;23:962.

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to NSERC for their continuous support over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Leclerc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclerc, M., Brassard, S. & Beaupré, S. Direct (hetero)arylation polymerization: toward defect-free conjugated polymers. Polym J 52, 13–20 (2020). https://doi.org/10.1038/s41428-019-0245-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0245-9

This article is cited by

Search

Quick links