Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain-specific suppression of AMPKα2 isoform impairs cognition and hippocampal LTP by PERK-mediated eIF2α phosphorylation

Abstract

The AMP-activated protein kinase (AMPK) is a molecular sensor to maintain energy homeostasis. The two isoforms of the AMPK catalytic subunit (AMPKα1 and α2) are both expressed in brains, but their roles in cognition are unknown. We generated conditional knockout mice in which brain AMPKα isoforms are selectively suppressed (AMPKα1/α2 cKO), and determined the isoform-specific effects in mice of either sex on cognition and synaptic plasticity. AMPKα2 cKO but not AMPKα1 cKO displayed impaired cognition and hippocampal late long-term potentiation (L-LTP). Further, AMPKα2 cKO mice exhibited decreased dendritic spine density and abnormal spine morphology in hippocampus. Electron microscope imaging demonstrated reduced postsynaptic density formation and fewer dendritic polyribosomes in hippocampi of AMPKα2 cKO mice. Biochemical studies revealed unexpected findings that repression of AMPKα2 resulted in increased phosphorylation of mRNA translational factor eIF2α and its kinase PERK. Importantly, L-LTP failure and cognitive impairments displayed in AMPKα2 cKO mice were alleviated by suppressing PERK activity pharmacologically or genetically. In summary, we demonstrate here that brain-specific suppression of AMPKα2 isoform impairs cognition and hippocampal LTP by PERK-mediated eIF2α phosphorylation, providing molecular mechanisms linking metabolism, protein synthesis, and cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of Forebrain- and Isoform-specific AMPKα knockout mice.
Fig. 2: Learning and memory are impaired in AMPKα2 cKO mice but unaffected in AMPKα1 cKO mice.
Fig. 3: Hippocampal L-LTP is impaired in AMPKα2 cKO mice but unaltered in AMPKα1 cKO mice.
Fig. 4: AMPKα2 cKO mice display abnormal hippocampal dendritic spine morphology and impaired postsynaptic density formation.
Fig. 5: Isoform-specific regulation of protein synthesis in AMPKα cKO mice.
Fig. 6: Increased phosphorylation of eIF2α and PERK in AMPKα2 cKO mice.
Fig. 7: Suppression of PERK activity alleviates L-LTP failure and cognitive impairments in AMPKα2 cKO mice.

Similar content being viewed by others

References

  1. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hardie DG. AMPK–sensing energy while talking to other signaling pathways. Cell Metab. 2014;20:939–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025–78.

    Article  CAS  PubMed  Google Scholar 

  4. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M, et al. AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol. 2010;45:276–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hardie DG. The AMP-activated protein kinase pathway–new players upstream and downstream. J Cell Sci. 2004;117:5479–87.

    Article  CAS  PubMed  Google Scholar 

  6. Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 2005;280:32081–9.

    Article  CAS  PubMed  Google Scholar 

  7. J.Magistretti P, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86:883–901.

    Article  CAS  Google Scholar 

  8. Potter WB, O’Riordan KJ, Barnett D, Osting SMK, Wagoner M, Burger C, et al. Metabolic regulation of neuronal plasticity by the energy sensor AMPK. PLoS ONE. 2010;5:e8996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ma T, Tzavaras N, Tsokas P, Landau EM, Blitzer RD. Synaptic stimulation of mTOR is mediated by Wnt signaling and regulation of glycogen synthetase kinase-3. J Neurosci. 2011;31:17537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malenka RC. The long-term potential of LTP. Nat Rev Neurosci. 2003;4:923–6.

    Article  CAS  PubMed  Google Scholar 

  11. Ma T, Chen Y, Vingtdeux V, Zhao H, Viollet B, Marambaud P, et al. Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid β. J Neurosci. 2014;34:12230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li J, Zeng Z, Viollet B, Ronnett GV, McCullough LD. Neuroprotective effects of adenosine monophosphate-activated protein kinase inhibition and gene deletion in stroke. Stroke. 2007;38:2992–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M. AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem. 2011;118:460–74.

    Article  CAS  PubMed  Google Scholar 

  14. Michell BJ, Stapleton D, Mitchelhill KI, House CM, Katsis F, Witters LA, et al. Isoform-specific purification and substrate specificity of the 5’-AMP-activated protein kinase. J Biol Chem. 1996;271:28445–50.

    Article  CAS  PubMed  Google Scholar 

  15. Woods A, Salt I, Scott J, Hardie DG, Carling D. The alpha1 and alpha2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett. 1996;397:347–51.

    Article  CAS  PubMed  Google Scholar 

  16. Viollet B, Andreelli F, Jørgensen SB, Perrin C, Geloen A, Flamez D, et al. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest. 2003;111:91–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jørgensen SB, Viollet B, Andreelli F, Frøsig C, Birk JB, Schjerling P, et al. Knockout of the alpha2 but not alpha1 5’-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem. 2004;279:1070–9.

    Article  PubMed  CAS  Google Scholar 

  18. Turnley AM, Stapleton D, Mann RJ, Witters LA, Kemp BE, Bartlett PF. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem. 1999;72:1707–16.

    Article  CAS  PubMed  Google Scholar 

  19. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25:1895–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klann E, Dever TE. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci. 2004;5:931–42.

    Article  CAS  PubMed  Google Scholar 

  21. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron. 2009;61:10–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alberini C. The role of protein synthesis during the labile phases of memory: revisiting the skepticism. Neurobiol Learn Mem. 2008;89:234–46.

    Article  CAS  PubMed  Google Scholar 

  23. Wek RC, Jiang H-Y, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006;34(Pt 1):7–11.

    Article  CAS  PubMed  Google Scholar 

  24. Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature. 2012;485:507–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Radford H, Moreno JA, Verity N, Halliday M, Mallucci GR. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 2015;130:633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E, Pierre P, et al. Suppression of eIF2α kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat Neurosci. 2013;16:1299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trinh MA, Kaphzan H, Wek RC, Pierre P, Cavener DR, Klann E. Brain-specific disruption of the eIF2α kinase PERK decreases ATF4 expression and impairs behavioral flexibility. Cell Rep. 2012;1:676–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang W, Zhou X, Cavener HZD, Klann E, Ma T. Repression of the eIF2α kinase PERK alleviates mGluR-LTD impairments in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2016;41:19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoeffer CA, Tang W, Wong H, Santillan A, Patterson RJ, Martinez LA, et al. Removal of FKBP12 enhances mTOR-Raptor interactions, LTP, memory, and perseverative/repetitive behavior. Neuron. 2008;60:832–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Risher WC, Ustunkaya T, Alvarado JS, Eroglu C. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PLoS ONE. 2014;9:e107591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hering H, Sheng M. Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci. 2001;2:880–8.

    Article  CAS  PubMed  Google Scholar 

  32. Beckelman BC, Yang W, Kasica NP, Zimmermann HR, Zhou X, Keene CD, et al. Genetic reduction of eEF2 kinase alleviates pathophysiology in Alzheimer’s disease model mice. J Clin Invest. 2019;129:820–33.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ma T, Du X, Pick JE, Sui G, Brownlee M, Klann E. Glucagon-like peptide-1 cleavage product GLP-1 (9-36) amide rescues synaptic plasticity and memory deficits in alzheimer’s disease model mice. J Neurosci. 2012;32:13701–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39.

    Article  CAS  PubMed  Google Scholar 

  35. Malenka RC, Nicoll RA. Long-term potentiation–a decade of progress? Science. 1999;285:1870–4.

    Article  CAS  PubMed  Google Scholar 

  36. Ma T, Hoeffer CA, Capetillo-Zarate E, Yu F, Wong H, Lin MT, et al. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease. PLoS ONE. 2010;5:e12845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Trinh MA, Ma T, Kaphzan H, Bhattacharya A, Antion MD, Cavener DR, et al. The eIF2α kinase PERK limits the expression of hippocampal metabotropic glutamate receptor-dependent long-term depression. Learn Mem. 2014;21:298–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katz B, Miledi R. The role of calcium in neuromuscular facilitation. J Physiol. 1968;195:481–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev. 2014;94:141–88.

    Article  CAS  PubMed  Google Scholar 

  40. Okabe S. Molecular anatomy of the postsynaptic density. Mol Cell Neurosci. 2007;34:503–18.

    Article  CAS  PubMed  Google Scholar 

  41. Clarke GL, Chen J, Nishimune H. Presynaptic active zone density during development and synaptic plasticity. Front Mol Neurosci. 2012;5:12.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sacktor TC. How does PKMζ maintain long-term memory? Nat Rev Neurosci. 2011;12:9–15.

    Article  CAS  PubMed  Google Scholar 

  43. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3:175–90.

    Article  CAS  PubMed  Google Scholar 

  44. Chen X, Yuan L-L, Zhao C, Birnbaum SG, Frick A, Jung WE, et al. Deletion of Kv4.2 gene eliminates dendritic A-type K+ current and enhances induction of long-term potentiation in hippocampal CA1 pyramidal neurons. J Neurosci. 2006;26:12143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ostroff LE, Fiala JC, Allwardt B, Harris KM. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron. 2002;35:535–45.

    Article  CAS  PubMed  Google Scholar 

  46. Ostroff LE, Botsford B, Gindina S, Cowansage KK, LeDoux JE, Klann E, et al. Accumulation of polyribosomes in dendritic spine heads, but not bases and necks, during memory consolidation depends on cap-dependent translation initiation. J Neurosci. 2017;37:1862–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6:275–7.

    Article  CAS  PubMed  Google Scholar 

  48. Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33:67–75.

    Article  CAS  PubMed  Google Scholar 

  49. Graber TE, McCamphill PK, Sossin WS. A recollection of mTOR signaling in learning and memory. Learn Mem. 2013;20:518–30.

    Article  CAS  PubMed  Google Scholar 

  50. Taha E, Gildish I, Gal-Ben-Ari S, Rosenblum K. The role of eEF2 pathway in learning and synaptic plasticity. Neurobiol Learn Mem. 2013;105:100–6.

    Article  CAS  PubMed  Google Scholar 

  51. Costa-Mattioli M, Gobert D, Stern E, Gamache K, Colina R, Cuello C, et al. eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell. 2007;129:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trinh MA, Klann E. Translational control by eIF2α kinases in long-lasting synaptic plasticity and long-term memory. Neurobiol Learn Mem. 2013;105:93–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ma T, Klann E. PERK: a novel therapeutic target for neurodegenerative diseases? Alzheimers Res Ther. 2014;6:30.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Prisco GVD, Huang W, Buffington SA, Hsu C-C, Bonnen PE, Placzek AN, et al. Translational control of mGluR-dependent long-term depression and object-place learning by eIF2α. Nat Neurosci. 2014;17:1073–82.

    Article  PubMed  CAS  Google Scholar 

  55. Marinangeli C, Didier S, Vingtdeux V. AMPK in neurodegenerative diseases: implications and therapeutic perspectives. Curr Drug Targets. 2016;17:890–907.

    Article  CAS  PubMed  Google Scholar 

  56. Vr Vingtdeux, Davies P, Dickson DW, Marambaud P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol. 2011;121:337–49.

    Article  CAS  Google Scholar 

  57. Sen T, Gupta R, Kaiser H, Sen N. Activation of PERK elicits memory impairment through inactivation of CREB and downregulation of PSD95 after traumatic brain injury. J Neurosci. 2017;37:5900–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu S, McGrath BC, Bai Y, Tang X, Cavener DR. PERK regulates Gq protein-coupled intracellular Ca2+ dynamics in primary cortical neurons. Mol Brain. 2016;9:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wang R, McGrath BC, Kopp RF, Roe MW, Tang X, Chen G, et al. Insulin secretion and Ca2+ dynamics in β-cells are regulated by PERK (EIF2AK3) in concert with calcineurin. J Biol Chem. 2013;288:33824–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Graber TE, Hébert-Seropian S, Khoutorsky A, David A, Yewdell JW, Lacaille J-C, et al. Reactivation of stalled polyribosomes in synaptic plasticity. Proc Natl Acad Sci USA. 2013;110:16205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sossin WS, DesGroseillers L. Intracellular trafficking of RNA in neurons. Traffic. 2006;7:1581–9.

    Article  CAS  PubMed  Google Scholar 

  62. Rangaraju V, Dieck S, Schuman EM. Local translation in neuronal compartments: how local is local? EMBO Rep. 2017;18:693–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. E.Heyer E, J.Moore M. Redefining the translational status of 80S monosomes. Cell. 2016;164:757–69.

    Article  CAS  Google Scholar 

  64. Kim H, Moon SY, Kim J-S, Baek CH, Kim M, Min JY, et al. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis. Am J Physiol Ren Physiol. 2015;308:F226–236.

    Article  CAS  Google Scholar 

  65. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25:9554–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Paschen W, Proud CG, Mies G. Shut-down of translation, a global neuronal stress response: mechanisms and pathological relevance. Curr Pharm Des. 2007;13:1887–902.

    Article  CAS  PubMed  Google Scholar 

  67. Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med. 2013;5:206ra138.

    Article  PubMed  CAS  Google Scholar 

  68. Zimmermann HR, Yang W, Kasica NP, Zhou X, Wang X, Beckelman BC, et al. Brain-specific repression of AMPKα1 alleviates pathophysiology in Alzheimer’s model mice. J Clin Invest. 2020E. https://doi.org/10.1172/JCI133982 [pub ahead of print].

Download references

Acknowledgements

We thank Dr Eric Klann of the New York University for providing the original breeders for the PERK cKO mice. We thank Mr Kenneth Grant for technical help on EM imaging. We thank Karen Klein, MA, in the Wake Forest Clinical and Translational Science Institute (UL1 TR001420) for editing the manuscript. This work was supported by National Institutes of Health grants K99/R00 AG044469, R01 AG055581, R01 AG056622 (TM), F31AG055264 (HRZ), the Alzheimer’s Association grant NIRG-15-362799 (TM), the BrightFocus Foundation grant A2017457S (TM), Wake Forest Alzheimer’s Disease Core Center (ADCC) pilot grant (TM), and a Wake Forest Clinical and Translational Science Institute (CTSI) pilot grant (TM). The mass spectrometry analysis was performed by the Proteomics and Metabolomics Shared Resource at Wake Forest School of Medicine, which is partly supported by the Comprehensive Cancer Support Grant (P30CA012197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zhou, X., Zimmermann, H.R. et al. Brain-specific suppression of AMPKα2 isoform impairs cognition and hippocampal LTP by PERK-mediated eIF2α phosphorylation. Mol Psychiatry 26, 1880–1897 (2021). https://doi.org/10.1038/s41380-020-0739-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0739-z

This article is cited by

Search

Quick links