Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The norepinephrine transporter gene modulates intrinsic brain activity, visual memory, and visual attention in children with attention-deficit/hyperactivity disorder

Subjects

Abstract

The norepinephrine transporter gene (SLC6A2) and deficits in visual memory and attention were associated with attention-deficit/hyperactivity disorder (ADHD). The present study aimed to examine whether the SLC6A2 rs36011 (T)/rs1566652 (G) haplotype affected the intrinsic brain activity in children with ADHD and whether these gene-brain modulations were associated with visual memory and attention in this population. A total of 96 drug-naive children with ADHD and 114 typically developing children (TDC) were recruited. We analyzed intrinsic brain activity with regional homogeneity (ReHo) and degree centrality (DC). Visual memory and visual attention were assessed by the delayed matching to sample (DMS) and rapid visual information processing (RVIP) tasks, respectively. The SNP genotyping of rs36011 and rs1566652 was performed. Children with ADHD showed lower ReHo and DC in the cuneus and lingual gyri than TDC. The TG haplotype was associated with significantly increased DC in the right precentral and postcentral gyri. Significant interactions of ADHD status and the TG haplotype were found in the right postcentral gyrus and superior parietal lobule for ReHo. For the ADHD-TG group, we found significant correlations of performance on the DMS and RVIP tasks with ReHo in bilateral precentral-postcentral gyri and the right postcentral gyrus-superior parietal lobule and DC in bilateral precentral-postcentral gyri. A novel gene-brain-behavior association was identified in which the intrinsic brain activity of the sensorimotor and dorsal attention networks was related to visual memory and visual attention in ADHD children with the SLC6A2 rs36011 (T)/rs1566652 (G) haplotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnsten AF. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry 2006;67(Suppl 8):7–12.

    CAS  PubMed  Google Scholar 

  2. Carboni E, Silvagni A. Dopamine reuptake by norepinephrine neurons: exception or rule? Crit Rev Neurobiol 2004;16:121–8.

    CAS  PubMed  Google Scholar 

  3. Bonisch H, Bruss M. The norepinephrine transporter in physiology and disease. Handb Exp Pharmacol. 2006;175:485–524.

  4. Shang CY, Chiang HL, Gau SS. A haplotype of the norepinephrine transporter gene (SLC6A2) is associated with visual memory in attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2015;58:89–96.

    CAS  PubMed  Google Scholar 

  5. Bobb AJ, Addington AM, Sidransky E, Gornick MC, Lerch JP, Greenstein DK, et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet 2005;134B:67–72.

    PubMed  Google Scholar 

  6. Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, et al. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev 2017;80:115–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shang CY, Wu YH, Gau SS, Tseng WY. Disturbed microstructural integrity of the frontostriatal fiber pathways and executive dysfunction in children with attention deficit hyperactivity disorder. Psychol Med. 2013;43:1093–107.

    CAS  PubMed  Google Scholar 

  8. Castellanos FX, Aoki Y. Intrinsic functional connectivity in attention-deficit/hyperactivity disorder: a science in development. Biol Psychiatry Cogn Neurosci Neuroimaging 2016;1:253–61.

    PubMed  PubMed Central  Google Scholar 

  9. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage 2004;22:394–400.

    PubMed  Google Scholar 

  10. Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, et al. Network centrality in the human functional connectome. Cereb Cortex 2012;22:1862–75.

    PubMed  Google Scholar 

  11. Cheng W, Ji X, Zhang J, Feng J. Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Front Syst Neurosci 2012;6:58.

    PubMed  PubMed Central  Google Scholar 

  12. An L, Cao XH, Cao QJ, Sun L, Yang L, Zou QH, et al. Methylphenidate normalizes resting-state brain dysfunction in boys with attention deficit hyperactivity disorder. Neuropsychopharmacology. 2013;38:1287–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alonso Bde C, Hidalgo Tobon S, Dies Suarez P, Garcia Flores J, de Celis Carrillo B, Barragan Perez E. A multi-methodological MR resting state network analysis to assess the changes in brain physiology of children with ADHD. PLoS ONE. 2014;9:e99119.

    PubMed  Google Scholar 

  14. Wang JB, Zheng LJ, Cao QJ, Wang YF, Sun L, Zang YF, et al. Inconsistency in abnormal brain activity across cohorts of ADHD-200 in children with attention deficit hyperactivity disorder. Front Neurosci 2017;11:320.

    PubMed  PubMed Central  Google Scholar 

  15. Wang X, Jiao Y, Tang T, Wang H, Lu Z. Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder. Eur J Radio. 2013;82:1552–7.

    Google Scholar 

  16. Di Martino A, Zuo XN, Kelly C, Grzadzinski R, Mennes M, Schvarcz A, et al. Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatry. 2013;74:623–32.

    PubMed  PubMed Central  Google Scholar 

  17. Wu Z, Yang L, Wang Y. Applying imaging genetics to ADHD: the promises and the challenges. Mol Neurobiol 2014;50:449–62.

    CAS  PubMed  Google Scholar 

  18. Sigurdardottir HL, Kranz GS, Rami-Mark C, James GM, Vanicek T, Gryglewski G, et al. Effects of norepinephrine transporter gene variants on NET binding in ADHD and healthy controls investigated by PET. Hum Brain Mapp 2016;37:884–95.

    PubMed  Google Scholar 

  19. Park MH, Kim JW, Yang YH, Hong SB, Park S, Kang H, et al. Regional brain perfusion before and after treatment with methylphenidate may be associated with the G1287A polymorphism of the norepinephrine transporter gene in children with attention-deficit/hyperactivity disorder. Neurosci Lett. 2012;514:159–63.

    CAS  PubMed  Google Scholar 

  20. Barnett R, Maruff P, Vance A. Neurocognitive function in attention-deficit-hyperactivity disorder with and without comorbid disruptive behaviour disorders. Aust N Z J Psychiatry 2009;43:722–30.

    PubMed  Google Scholar 

  21. Shang CY, Gau SS. Visual memory as a potential cognitive endophenotype of attention deficit hyperactivity disorder. Psychol Med. 2011;41:2603–14.

    CAS  PubMed  Google Scholar 

  22. Gau SS, Huang WL. Rapid visual information processing as a cognitive endophenotype of attention deficit hyperactivity disorder. Psychol Med. 2014;44:435–46.

    PubMed  Google Scholar 

  23. Moor T, Mundorff L, Bohringer A, Philippsen C, Langewitz W, Reino ST, et al. Evidence that baroreflex feedback influences long-term incidental visual memory in men. Neurobiol Learn Mem 2005;84:168–74.

    PubMed  Google Scholar 

  24. Gau SS, Shang CY. Improvement of executive functions in boys with attention deficit hyperactivity disorder: an open-label follow-up study with once-daily atomoxetine. Int J Neuropsychopharmacol 2010;13:243–56.

    CAS  PubMed  Google Scholar 

  25. Grady CL, Protzner AB, Kovacevic N, Strother SC, Afshin-Pour B, Wojtowicz M, et al. A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb Cortex 2010;20:1432–47.

    PubMed  Google Scholar 

  26. Pagnoni G. Dynamical properties of BOLD activity from the ventral posteromedial cortex associated with meditation and attentional skills. J Neurosci. 2012;32:5242–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gau SS, Shang CY, Liu SK, Lin CH, Swanson JM, Liu YC, et al. Psychometric properties of the Chinese version of the Swanson, Nolan, and Pelham, version IV scale - parent form. Int J Methods Psychiatr Res 2008;17:35–44.

    PubMed  PubMed Central  Google Scholar 

  28. Swanson JM, Kraemer HC, Hinshaw SP, Arnold LE, Conners CK, Abikoff HB, et al. Clinical relevance of the primary findings of the MTA: success rates based on severity of ADHD and ODD symptoms at the end of treatment. J Am Acad Child Adolesc Psychiatry 2001;40:168–79.

    CAS  PubMed  Google Scholar 

  29. Egerhazi A, Berecz R, Bartok E, Degrell I. Automated Neuropsychological Test Battery (CANTAB) in mild cognitive impairment and in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:746–51.

    PubMed  Google Scholar 

  30. Sahakian B, Jones G, Levy R, Gray J, Warburton D. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. Br J Psychiatry 1989;154:797–800.

    CAS  PubMed  Google Scholar 

  31. Shang CY, Gau SS. Association between the DAT1 gene and spatial working memory in attention deficit hyperactivity disorder. Int J Neuropsychopharmacol 2014;17:9–21.

    CAS  PubMed  Google Scholar 

  32. Shang CY, Gau SS, Liu CM, Hwu HG. Association between the dopamine transporter gene and the inattentive subtype of attention deficit hyperactivity disorder in Taiwan. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:421–8.

    CAS  PubMed  Google Scholar 

  33. Yan CG, Zang YF. DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13.

    Google Scholar 

  34. Pruim RH, Mennes M, Buitelaar JK, Beckmann CF. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Neuroimage 2015;112:278–87.

    PubMed  Google Scholar 

  35. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2012;2:125–41.

    PubMed  Google Scholar 

  36. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 2007;37:90–101.

    PubMed  Google Scholar 

  37. Hahn B, Ross TJ, Stein EA. Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention. Neuroimage 2006;32:842–53.

    PubMed  Google Scholar 

  38. Huettel SA, Guzeldere G, McCarthy G. Dissociating the neural mechanisms of visual attention in change detection using functional MRI. J Cogn Neurosci 2001;13:1006–18.

    CAS  PubMed  Google Scholar 

  39. Balslev D, Odoj B, Karnath HO. Role of somatosensory cortex in visuospatial attention. J Neurosci. 2013;33:18311–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Suchan B, Botko R, Gizewski E, Forsting M, Daum I. Neural substrates of manipulation in visuospatial working memory. Neuroscience 2006;139:351–7.

    CAS  PubMed  Google Scholar 

  41. Bueicheku E, Ventura-Campos N, Palomar-Garcia MA, Miro-Padilla A, Parcet MA, Avila C. Functional connectivity between superior parietal lobule and primary visual cortex “at rest” predicts visual search efficiency. Brain Connect 2015;5:517–26.

    PubMed  Google Scholar 

  42. Koenigs M, Barbey AK, Postle BR, Grafman J. Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci. 2009;29:14980–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wolf RC, Plichta MM, Sambataro F, Fallgatter AJ, Jacob C, Lesch KP, et al. Regional brain activation changes and abnormal functional connectivity of the ventrolateral prefrontal cortex during working memory processing in adults with attention-deficit/hyperactivity disorder. Hum Brain Mapp 2009;30:2252–66.

    PubMed  Google Scholar 

  44. Dibbets P, Evers EA, Hurks PP, Bakker K, Jolles J. Differential brain activation patterns in adult attention-deficit hyperactivity disorder (ADHD) associated with task switching. Neuropsychology 2010;24:413–23.

    PubMed  Google Scholar 

  45. Mostofsky SH, Rimrodt SL, Schafer JG, Boyce A, Goldberg MC, Pekar JJ, et al. Atypical motor and sensory cortex activation in attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study of simple sequential finger tapping. Biol Psychiatry. 2006;59:48–56.

    PubMed  Google Scholar 

  46. Valera EM, Spencer RM, Zeffiro TA, Makris N, Spencer TJ, Faraone SV, et al. Neural substrates of impaired sensorimotor timing in adult attention-deficit/hyperactivity disorder. Biol Psychiatry. 2010;68:359–67.

    PubMed  PubMed Central  Google Scholar 

  47. Bekar LK, Wei HS, Nedergaard M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J Cereb Blood Flow Metab 2012;32:2135–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schulz KP, Bedard AV, Fan J, Hildebrandt TB, Stein MA, Ivanov I, et al. Striatal activation predicts differential therapeutic responses to methylphenidate and atomoxetine. J Am Acad Child Adolesc Psychiatry 2017;56:602–9.

    PubMed  Google Scholar 

  49. Shang CY, Yan CG, Lin HY, Tseng WY, Castellanos FX, Gau SS. Differential effects of methylphenidate and atomoxetine on intrinsic brain activity in children with attention deficit hyperactivity disorder. Psychol Med. 2016;46:3173–85.

    CAS  PubMed  Google Scholar 

  50. Wang L, Li X, Hsiao SS, Bodner M, Lenz F, Zhou YD. Persistent neuronal firing in primary somatosensory cortex in the absence of working memory of trial-specific features of the sample stimuli in a haptic working memory task. J Cogn Neurosci 2012;24:664–76.

    CAS  PubMed  Google Scholar 

  51. Coull JT, Frith CD, Frackowiak RS, Grasby PM. A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia 1996;34:1085–95.

    CAS  PubMed  Google Scholar 

  52. Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci 2012;16:17–26.

    PubMed  Google Scholar 

  53. Fan LY, Gau SS, Chou TL. Neural correlates of inhibitory control and visual processing in youths with attention deficit hyperactivity disorder: a counting Stroop functional MRI study. Psychol Med. 2014;44:2661–71.

    PubMed  Google Scholar 

  54. Casey BJ, Tottenham N, Liston C, Durston S. Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 2005;9:104–10.

    CAS  PubMed  Google Scholar 

  55. Shaw P, Malek M, Watson B, Sharp W, Evans A, Greenstein D. Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;72:191–7.

    PubMed  Google Scholar 

  56. Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. 2012;125:114–26.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants NSC96-2628-B-002-069-MY3, NSC98-2314-B-002-051 -MY3, NSC99-2321-B-002-037, and NSC101-2321-B-002-079 from Ministry of Science and Technology (Taiwan) and grants NHRI-EX98-9407PC and NHRI-EX100-0008PI from National Health Research Institute (Taiwan). SNP genotyping was performed by the National Genotyping Center of Academia Sinica, Taiwan, and by the support from the Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

CYS and SSG contributed to concept and design of the study. CYS and SSG contributed to data acquisition. CYS, HYL, and SSG contributed to data analysis/interpretation. CYS contributed to drafting the manuscript, tables, and figures, which were critically reviewed by SSG. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Susan Shur-Fen Gau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, CY., Lin, HY. & Gau, S.SF. The norepinephrine transporter gene modulates intrinsic brain activity, visual memory, and visual attention in children with attention-deficit/hyperactivity disorder. Mol Psychiatry 26, 4026–4035 (2021). https://doi.org/10.1038/s41380-019-0545-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0545-7

This article is cited by

Search

Quick links