Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KCNH2-3.1 mediates aberrant complement activation and impaired hippocampal-medial prefrontal circuitry associated with working memory deficits

Abstract

Increased expression of the 3.1 isoform of the KCNH2 potassium channel has been associated with cognitive dysfunction and with schizophrenia, yet little is known about the underlying pathophysiological mechanisms. Here, by using in vivo wireless local field potential recordings during working memory processing, in vitro brain slice whole-cell patching recordings and in vivo stereotaxic hippocampal injection of AAV-encoded expression, we identified specific and delayed disruption of hippocampal-mPFC synaptic transmission and functional connectivity associated with reductions of SERPING1, CFH, and CD74 in the KCNH2-3.1 overexpression transgenic mice. The differentially expressed genes in mice are enriched in neurons and microglia, and reduced expression of these genes dysregulates the complement cascade, which has been previously linked to synaptic plasticity. We find that knockdown of these genes in primary neuronal–microglial cocultures from KCNH2-3.1 mice impairs synapse formation, and replenishing reduced CFH gene expression rescues KCNH2-3.1-induced impaired synaptogenesis. Translating to humans, we find analogous dysfunctional interactions between hippocampus and prefrontal cortex in coupling of the fMRI blood oxygen level-dependent (BOLD) signal during working memory in healthy subjects carrying alleles associated with increased KCNH2-3.1 expression in brain. Our data uncover a previously unrecognized role of the truncated KCNH2-3.1 potassium channel in mediating complement activation, which may explain its association with altered hippocampal–prefrontal connectivity and synaptic function. These results provide a potential molecular link between increased KCNH2-3.1 expression, synapse alterations, and hippocampal–prefrontal circuit abnormalities implicated in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Sequencing data have been submitted to the GEO repository under accession numbers GSE118989 (for all RNA-seq data).

References

  1. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60:1187–92.

    PubMed  Google Scholar 

  2. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Google Scholar 

  3. Marshall CR, Howrigan DP, Merico D, Thiruvahindrapuram B, Wu W, Greer DS, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49:27–35.

    CAS  PubMed  Google Scholar 

  4. Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L, et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci. 2018;21:1117–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sacco T, Bruno A, Wanke E, Tempia F. Functional roles of an ERG current isolated in cerebellar Purkinje neurons. J Neurophysiol. 2003;90:1817–28.

    PubMed  Google Scholar 

  6. Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440:463–9.

    CAS  PubMed  Google Scholar 

  7. Guasti L, Cilia E, Crociani O, Hofmann G, Polvani S, Becchetti A, et al. Expression pattern of the ether-a-go-go-related (ERG) family proteins in the adult mouse central nervous system: evidence for coassembly of different subunits. J Comp Neurol. 2005;491:157–74.

    CAS  PubMed  Google Scholar 

  8. Apud JA, Zhang F, Decot H, Bigos KL, Weinberger DR. Genetic variation in KCNH2 associated with expression in the brain of a unique hERG isoform modulates treatment response in patients with schizophrenia. Am J Psychiatry. 2012;169:725–34.

    PubMed  Google Scholar 

  9. Huffaker SJ, Chen J, Nicodemus KK, Sambataro F, Yang F, Mattay V, et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med. 2009;15:509–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Carr GV, Chen J, Yang F, Ren M, Yuan P, Tian Q, et al. KCNH2-3.1 expression impairs cognition and alters neuronal function in a model of molecular pathology associated with schizophrenia. Mol Psychiatry. 2016;21:1517–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Newman J, Grace AA. Binding across time: the selective gating of frontal and hippocampal systems modulating working memory and attentional states. Conscious Cognit. 1999;8:196–212.

    CAS  Google Scholar 

  13. McGaugh JL. Memory-a century of consolidation. Science. 2000;287:248–51.

    CAS  PubMed  Google Scholar 

  14. Harrison PJ. The neuropathology of schizophrenia. a critical review of the data and their interpretation. Brain. 1999;122(Pt 4):593–624.

    PubMed  Google Scholar 

  15. Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry. 1999;45:17–25.

    CAS  PubMed  Google Scholar 

  16. Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry. 1991;48:625–32.

    CAS  PubMed  Google Scholar 

  17. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–9.

    CAS  PubMed  Google Scholar 

  18. Waddington JL. Schizophrenia: developmental neuroscience and pathobiology. Lancet. 1993;341:531–6.

    CAS  PubMed  Google Scholar 

  19. Weinberger DR, Lipska BK. Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res. 1995;16:87–110.

    CAS  PubMed  Google Scholar 

  20. Wolf SS, Weinberger DR. Schizophrenia: a new frontier in developmental neurobiology. Isr J Med Sci. 1996;32:51–5.

    CAS  PubMed  Google Scholar 

  21. Lipska BK, Jaskiw GE, Chrapusta S, Karoum F, Weinberger DR. Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Res. 1992;585:1–6.

    CAS  PubMed  Google Scholar 

  22. Lipska BK, Chrapusta SJ, Egan MF, Weinberger DR. Neonatal excitotoxic ventral hippocampal damage alters dopamine response to mild repeated stress and to chronic haloperidol. Synapse. 1995;20:125–30.

    CAS  PubMed  Google Scholar 

  23. Gill KM, Lodge DJ, Cook JM, Aras S, Grace AA. A novel alpha5GABA(A)R-positive allosteric modulator reverses hyperactivation of the dopamine system in the MAM model of schizophrenia. Neuropsychopharmacology. 2011;36:1903–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tseng KY, Lewis BL, Hashimoto T, Sesack SR, Kloc M, Lewis DA, et al. A neonatal ventral hippocampal lesion causes functional deficits in adult prefrontal cortical interneurons. J Neurosci. 2008;28:12691–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lipska BK, Weinberger DR. To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology. 2000;23:223–39.

    CAS  PubMed  Google Scholar 

  26. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci USA. 2007;104:10164–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney WE Jr, et al. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex. 1995;5:550–60.

    CAS  PubMed  Google Scholar 

  28. Bertolino A, Breier A, Callicott JH, Adler C, Mattay VS, Shapiro M, et al. The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology. 2000;22:125–32.

    CAS  PubMed  Google Scholar 

  29. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57:65–73.

    CAS  PubMed  Google Scholar 

  30. Saunders RC, Kolachana BS, Bachevalier J, Weinberger DR. Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature. 1998;393:169–71.

    CAS  PubMed  Google Scholar 

  31. Rasetti R, Sambataro F, Chen Q, Callicott JH, Mattay VS, Weinberger DR. Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry. 2011;68:1207–17.

    PubMed  Google Scholar 

  32. Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, et al. Neural mechanisms of a genome-wide supported psychosis variant. Science. 2009;324:605.

    CAS  PubMed  Google Scholar 

  33. Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35:369–89.

    CAS  PubMed  Google Scholar 

  34. Barnum SR. Complement biosynthesis in the central nervous system. Crit Rev Oral Biol Med. 1995;6:132–46.

    CAS  PubMed  Google Scholar 

  35. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    CAS  PubMed  Google Scholar 

  36. Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;10:647–58.

    CAS  PubMed  Google Scholar 

  37. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78.

    CAS  PubMed  Google Scholar 

  38. Presumey J, Bialas AR, Carroll MC. Complement system in neural synapse elimination in development and disease. Adv Immunol. 2017;135:53–79.

    CAS  PubMed  Google Scholar 

  39. Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22:374–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fagan K, Crider A, Ahmed AO, Pillai A. Complement C3 expression is decreased in autism spectrum disorder subjects and contributes to behavioral deficits in rodents. Mol Neuropsychiatry. 2017;3:19–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, et al. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry. 2005;62:379–86.

    PubMed  Google Scholar 

  42. Heide J, Zhang F, Bigos KL, Mann SA, Carr VJ, Shannon Weickert C, et al. Differential response to risperidone in schizophrenia patients by KCNH2 genotype and drug metabolizer status. Am J Psychiatry. 2016;173:53–9.

    PubMed  Google Scholar 

  43. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature. 2010;464:763–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B. Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology. 2002;27:47–54.

    PubMed  Google Scholar 

  45. Verma A, Moghaddam B. NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci. 1996;16:373–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamamoto J, Suh J, Takeuchi D, Tonegawa S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell. 2014;157:845–57.

    CAS  PubMed  Google Scholar 

  47. Parent MA, Wang L, Su J, Netoff T, Yuan LL. Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex. 2010;20:393–403.

    PubMed  Google Scholar 

  48. Davis AE 3rd. Biological effects of C1 inhibitor. Drug News Perspect. 2004;17:439–46.

    CAS  PubMed  Google Scholar 

  49. Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9:729–40.

    CAS  PubMed  Google Scholar 

  50. Cicardi M, Zingale L, Zanichelli A, Pappalardo E, Cicardi B. C1 inhibitor: molecular and clinical aspects. Springe Semin Immunopathol. 2005;27:286–98.

    CAS  Google Scholar 

  51. Zeiner PS, Preusse C, Blank AE, Zachskorn C, Baumgarten P, Caspary L, et al. MIF Receptor CD74 is restricted to microglia/macrophages, associated with a M1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol. 2015;25:491–504.

    CAS  PubMed  Google Scholar 

  52. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tay TL, Bechade C, D’Andrea I, St-Pierre MK, Henry MS, Roumier A, et al. Microglia gone rogue: impacts on psychiatric disorders across the lifespan. Front Mol Neurosci. 2017;10:421.

    PubMed  Google Scholar 

  54. Johnson MB, Stevens B. Pruning hypothesis comes of age. Nature. 2018;554:438–9.

    CAS  PubMed  Google Scholar 

  55. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–90 e1217.

    CAS  PubMed  Google Scholar 

  56. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47:566–81 e569.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X, Sens JP, et al. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med. 2018;215:2235–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liszewski MK, Atkinson JP. Complement regulator CD46: genetic variants and disease associations. Hum Genomics. 2015;9:7.

    PubMed  PubMed Central  Google Scholar 

  59. Lachmann PJ. The amplification loop of the complement pathways. Adv Immunol. 2009;104:115–49.

    CAS  PubMed  Google Scholar 

  60. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY, et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell. 2016;165:921–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3:89–97.

    CAS  PubMed  Google Scholar 

  62. Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci. 1998;1:318–23.

    CAS  PubMed  Google Scholar 

  63. Fletcher P. The missing link: a failure of fronto-hippocampal integration in schizophrenia. Nat Neurosci. 1998;1:266–7.

    CAS  PubMed  Google Scholar 

  64. Schneider M, Walter H, Moessnang C, Schafer A, Erk S, Mohnke S, et al. Altered DLPFC-hippocampus connectivity during working memory: independent replication and disorder specificity of a putative genetic risk phenotype for schizophrenia. Schizophr Bull. 2017;43:1114–22.

    PubMed  PubMed Central  Google Scholar 

  65. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex. 2000;10:1078–92.

    CAS  PubMed  Google Scholar 

  66. Callicott JH, Egan MF, Mattay VS, Bertolino A, Bone AD, Verchinksi B, et al. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry. 2003;160:709–19.

    PubMed  Google Scholar 

  67. Arnsten AF, Wang M. Targeting prefrontal cortical systems for drug development: potential therapies for cognitive disorders. Annu Rev Pharm Toxicol. 2016;56:339–60.

    CAS  Google Scholar 

  68. Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10:410–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hains AB, Yabe Y, Arnsten AF. Chronic stimulation of alpha-2A-adrenoceptors with guanfacine protects rodent prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Neurobiol Stress. 2015;2:1–9.

    PubMed  PubMed Central  Google Scholar 

  70. Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18:727–40.

    CAS  PubMed  Google Scholar 

  71. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuro Psychoph. 2013;42:115–21.

    CAS  Google Scholar 

  72. Birnbaum R, Jaffe AE, Chen Q, Shin JH, BrainSeq C, Kleinman JE, et al. Investigating the neuroimmunogenic architecture of schizophrenia. Mol Psychiatry. 2018;23:1251–60.

    CAS  PubMed  Google Scholar 

  73. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? Science. 2013;339:156–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38:1285–91.

    CAS  PubMed  Google Scholar 

  76. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:206–14.

    CAS  PubMed  Google Scholar 

  78. De Picker LJ, Morrens M, Chance SA, Boche D. Microglia and brain plasticity in acute psychosis and schizophrenia illness course: a meta-review. Front Psychiatry. 2017;8:238.

    PubMed  PubMed Central  Google Scholar 

  79. Di Biase MA, Zalesky A, O’keefe G, Laskaris L, Baune BT, Weickert CS, et al. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiat. 2017;7:e1225.

    Google Scholar 

  80. Ormel PR, van Mierlo HC, Litjens M, Strien MEV, Hol EM, Kahn RS, et al. Characterization of macrophages from schizophrenia patients. NPJ Schizophr. 2017;3:41.

    PubMed  PubMed Central  Google Scholar 

  81. Heide J, Vandenberg JI, Weickert CS. Expression of KCNH2-3.1 mRNA is increased in small neurons in the dorsolateral prefrontal cortex in patients with schizophrenia. Eur J Psychiat. 2015;29:85–103.

    Google Scholar 

  82. Kosugi S, Hasebe M, Tomita M, Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs (vol 106, pg 10171, 2009). Proc Natl Acad Sci USA. 2009;106:13142–13142.

    CAS  Google Scholar 

  83. Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, et al. Six Classes of Nuclear Localization Signals Specific to Different Binding Grooves of Importin alpha. J Biol Chem. 2009;284:478–85.

    CAS  PubMed  Google Scholar 

  84. Calcaterra NE, Hoeppner DJ, Wei H, Jaffe AE, Maher BJ, Barrow JC. Schizophrenia-associated hERG channel Kv11.1-3.1 exhibits a unique trafficking deficit that is rescued through proteasome inhibition for high throughput screening. Sci Rep. 2016;6:19976.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Curley AA, Eggan SM, Lazarus MS, Huang ZJ, Volk DW, Lewis DA. Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: implications for schizophrenia. Neurobiol Dis. 2013;50:179–86.

    CAS  PubMed  Google Scholar 

  86. Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10:206–19.

    CAS  PubMed  Google Scholar 

  87. Defelipe J. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat. 2011;5:29.

    PubMed  PubMed Central  Google Scholar 

  88. Welch PD. Use of fast fourier transform for estimation of power spectra—a method based on time averaging over short modified periodograms. Ieee T Acoust Speech. 1967;Au15:70-+.

    Google Scholar 

  89. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.

    PubMed  Google Scholar 

  90. Mitra PP, Bokil H. Observed brain dynamics. New York, NY: Oxford University Press; 2008.

    Google Scholar 

  91. Ji Y, Lu Y, Yang F, Shen W, Tang TT, Feng L, et al. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci. 2010;13:302–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids Res. 2015;43:e47.

    PubMed  PubMed Central  Google Scholar 

  93. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids Res. 2000;28:27–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gene Ontology C. Gene ontology consortium: going forward. Nucleic acids Res. 2015;43:D1049–1056.

    Google Scholar 

  95. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rasetti R, Mattay VS, White MG, Sambataro F, Podell JE, Zoltick B, et al. Altered hippocampal-parahippocampal function during stimulus encoding: a potential indicator of genetic liability for schizophrenia. JAMA Psychiatry. 2014;71:236–47.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Institute of Mental Health (NIMH) R01MH101102 (FY). FY was also supported by Department of Defense (DoD) CDMRP W81XWH-16-2-0002. Lieber Institute also supported this study. The authors wish to thank the Lieber Institute founders, C. Lieber, S. Lieber and S. Lieber, T. Maltz and M. Maltz, for their vision, encouragement and support. We thank Brady Maher, Keri Martinowich, and Zhibin Wang for the thoughtful comments and suggestions. We also thank M. Pucak for the technical support of the Imaris software confocal image processing (Imaging Core was partially supported by an NINDS Core Center Grant P30 NS050274). We are grateful for the technical support of the many staff members in the Lieber Institute for Brain Development who are not part of the authorship of this paper.

Author information

Authors and Affiliations

Authors

Contributions

FY and DRW conceived the study and organized the entire research. RM, ZH, QC, ZW, FY, and DRW designed the study. RM, FY, QC, YL, SZ, and VS performed T-maze and the LFPs experiments and analysed the data, assisted by ZH, SLQ, XL, JZ, QT, DP, and KHW; VSM, JHC, and KFB performed the fMRI data collection; QC performed the fMRI analysis; RM conducted all whole-cell patch recording, RM and FY analyzed electrophysiological data; ZH assisted by JW conducted the molecular biology and morphology experiments, and data analyses in this study; ZH assisted by QT made all RNA-seq libraries; WX and YJ carried out the RNA-seq preparation and sequencing; AJ, NR, and JHS performed RNA-seq data analysis; ZH performed neuronal and microglial gene expression assay; MR, ZH, QC, AJ, DRW, and FY wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Daniel R. Weinberger or Feng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, M., Hu, Z., Chen, Q. et al. KCNH2-3.1 mediates aberrant complement activation and impaired hippocampal-medial prefrontal circuitry associated with working memory deficits. Mol Psychiatry 25, 206–229 (2020). https://doi.org/10.1038/s41380-019-0530-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0530-1

This article is cited by

Search

Quick links