Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting group I p21-activated kinases to control malignant peripheral nerve sheath tumor growth and metastasis

Abstract

Malignant peripheral nerve sheath tumors (MPNSTs) are devastating sarcomas for which no effective medical therapies are available. Over 50% of MPSNTs are associated with mutations in NF1 tumor suppressor gene, resulting in activation of Ras and its effectors, including the Raf/Mek/Erk and PI3K/Akt/mTORC1 signaling cascades, and also the WNT/β-catenin pathway. As Group I p21-activated kinases (Group I Paks, PAK1/2/3) have been shown to modulate Ras-driven oncogenesis, we asked if these enzymes might regulate signaling in MPNSTs. In this study we found a strong positive correlation between the activity of PAK1/2/3 and the stage of human MPNSTs. We determined that reducing Group I Pak activity diminished MPNST cell proliferation and motility, and that these effects were not accompanied by significant blockade of the Raf/Mek/Erk pathway, but rather by reductions in Akt and β-catenin activity. Using the small molecule PAK1/2/3 inhibitor Frax1036 and the MEK1/2 inhibitor PD0325901, we showed that the combination of these two agents synergistically inhibited MPNST cell growth in vitro and dramatically decreased local and metastatic MPNST growth in animal models. Taken together, these data provide new insights into MPNST signaling deregulation and suggest that co-targeting of PAK1/2/3 and MEK1/2 may be effective in the treatment of patients with MPNSTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Carroll SL, Ratner N . How does the Schwann cell lineage form tumors in NF1? GLIA 2008; 56: 1590–1605.

    Article  Google Scholar 

  2. Widemann BC . Current status of sporadic and neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Curr Oncol Rep 2009; 11: 322–328.

    Article  Google Scholar 

  3. Katz D, Lazar A, Lev D . Malignant peripheral nerve sheath tumour (MPNST): the clinical implications of cellular signalling pathways. Expert Rev Mol Med 2009; 11: e30.

    Article  Google Scholar 

  4. Tonsgard JH . Clinical manifestations and management of neurofibromatosis type 1. Semin Pediatr Neurol 2006; 13: 2–7.

    Article  Google Scholar 

  5. Kolberg M, Holand M, Agesen TH, Brekke HR, Liestol K, Hall KS et al. Survival meta-analyses for >1800 malignant peripheral nerve sheath tumor patients with and without neurofibromatosis type 1. Neuro-oncology 2013; 15: 135–147.

    Article  CAS  Google Scholar 

  6. Packer RJ, Rosser T . Therapy for plexiform neurofibromas in children with neurofibromatosis 1: an overview. J Child Neurol 2002; 17: 638–641.

    Article  Google Scholar 

  7. Carroll SL . Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms. Acta Neuropathol 2012; 123: 321–348.

    Article  CAS  Google Scholar 

  8. Malone CF, Fromm JA, Maertens O, DeRaedt T, Ingraham R, Cichowski K . Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers. Cancer discov 2014; 4: 1062–1073.

    Article  CAS  Google Scholar 

  9. Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest 2013; 123: 340–347.

    Article  CAS  Google Scholar 

  10. Johansson G, Mahller YY, Collins MH, Kim MO, Nobukuni T, Perentesis J et al. Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Mol Cancer Ther 2008; 7: 1237–1245.

    Article  CAS  Google Scholar 

  11. Endo M, Yamamoto H, Setsu N, Kohashi K, Takahashi Y, Ishii T et al. Prognostic significance of AKT/mTOR and MAPK pathways and antitumor effect of mTOR inhibitor in NF1-related and sporadic malignant peripheral nerve sheath tumors. Clin Cancer Res 2013; 19: 450–461.

    Article  CAS  Google Scholar 

  12. Mo W, Chen J, Patel A, Zhang L, Chau V, Li Y et al. CXCR4/CXCL12 mediate autocrine cell- cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell 2013; 152: 1077–1090.

    Article  CAS  Google Scholar 

  13. Luscan A, Shackleford G, Masliah-Planchon J, Laurendeau I, Ortonne N, Varin J et al. The activation of the WNT signaling pathway is a Hallmark in neurofibromatosis type 1 tumorigenesis. Clin Cancer Res 2014; 20: 358–371.

    Article  CAS  Google Scholar 

  14. Watson AL, Rahrmann EP, Moriarity BS, Choi K, Conboy CB, Greeley AD et al. Canonical Wnt/beta-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Discov 2013; 3: 674–689.

    Article  CAS  Google Scholar 

  15. Eswaran J, Soundararajan M, Kumar R, Knapp S . UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci 2008; 33: 394–403.

    Article  CAS  Google Scholar 

  16. Radu M, Semenova G, Kosoff R, Chernoff J . PAK signalling during the development and progression of cancer. Nat Rev Cancer 2014; 14: 13–25.

    Article  CAS  Google Scholar 

  17. Ye DZ, Field J . PAK signaling in cancer. Cell Logist 2012; 2: 105–116.

    Article  Google Scholar 

  18. Tang Y, Marwaha S, Rutkowski JL, Tennekoon GI, Phillips PC, Field J . A role for Pak protein kinases in Schwann cell transformation. Proc Natl Acad Sci USA 1998; 95: 5139–5144.

    Article  CAS  Google Scholar 

  19. Upadhyaya M, Spurlock G, Thomas L, Thomas NS, Richards M, Mautner VF et al. Microarray-based copy number analysis of neurofibromatosis type-1 (NF1)-associated malignant peripheral nerve sheath tumors reveals a role for Rho-GTPase pathway genes in NF1 tumorigenesis. Hum Mutat 2012; 33: 763–776.

    Article  CAS  Google Scholar 

  20. Ingram DA, Hiatt K, King AJ, Fisher L, Shivakumar R, Derstine C et al. Hyperactivation of p21(ras) and the hematopoietic-specific Rho GTPase, Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro. J Exp Med 2001; 194: 57–69.

    Article  CAS  Google Scholar 

  21. Dasgupta B, Li W, Perry A, Gutmann DH . Glioma formation in neurofibromatosis 1 reflects preferential activation of K-RAS in astrocytes. Cancer Res 2005; 65: 236–245.

    CAS  PubMed  Google Scholar 

  22. Chong C, Tan L, Lim L, Manser E . The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J Biol Chem 2001; 276: 17347–17353.

    Article  CAS  Google Scholar 

  23. Chow HY, Stepanova D, Koch J, Chernoff J . p21-Activated kinases are required for transformation in a cell-based model of neurofibromatosis type 2. PLoS One 2010; 5: e13791.

    Article  Google Scholar 

  24. Chow HY, Dong B, Duron SG, Campbell DA, Ong CC, Hoeflich KP et al. Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget 2015; 6: 1981–1994.

    Article  Google Scholar 

  25. Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 2008; 15: 322–331.

    Article  CAS  Google Scholar 

  26. Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB et al. PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol 2003; 162: 281–291.

    Article  CAS  Google Scholar 

  27. Beeser A, Jaffer ZM, Hofmann C, Chernoff J . Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem 2005; 280: 36609–36615.

    Article  CAS  Google Scholar 

  28. Arias-Romero LE, Villamar-Cruz O, Huang M, Hoeflich KP, Chernoff J . Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res 2013; 73: 3671–3682.

    Article  CAS  Google Scholar 

  29. He H, Huynh N, Liu KH, Malcontenti-Wilson C, Zhu J, Christophi C et al. P-21 activated kinase 1 knockdown inhibits beta-catenin signalling and blocks colorectal cancer growth. Cancer Lett 2012; 317: 65–71.

    Article  CAS  Google Scholar 

  30. MacDonald BT, Tamai K, He X . Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.

    Article  CAS  Google Scholar 

  31. Barker N . The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol 2008; 468: 5–15.

    Article  CAS  Google Scholar 

  32. Yang J, Du X, Wang G, Sun Y, Chen K, Zhu X et al. Mesenchymal to epithelial transition in sarcomas. Eur J Cancer 2014; 50: 593–601.

    Article  CAS  Google Scholar 

  33. Crawford AT, Desai D, Gokina P, Basak S, Kim HA . E-cadherin expression in postnatal Schwann cells is regulated by the cAMP-dependent protein kinase a pathway. Glia 2008; 56: 1637–1647.

    Article  Google Scholar 

  34. Brown AP, Carlson TC, Loi CM, Graziano MJ . Pharmacodynamic and toxicokinetic evaluation of the novel MEK inhibitor, PD0325901, in the rat following oral and intravenous administration. Cancer Chemother Pharmacol 2007; 59: 671–679.

    Article  CAS  Google Scholar 

  35. Torres KE, Zhu QS, Bill K, Lopez G, Ghadimi MP, Xie X et al. Activated MET is a molecular prognosticator and potential therapeutic target for malignant peripheral nerve sheath tumors. Clin Cancer Res 2011; 17: 3943–3955.

    Article  CAS  Google Scholar 

  36. Shrestha Y, Schafer EJ, Boehm JS, Thomas SR, He F, Du J et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene 2012; 31: 3397–3408.

    Article  CAS  Google Scholar 

  37. Prudnikova TY, Villamar-Cruz O, Rawat SJ, Cai KQ, Chernoff J . Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells. Oncogene 2016; 35: 2178–2185.

    Article  CAS  Google Scholar 

  38. Watson AL, Anderson LK, Greeley AD, Keng VW, Rahrmann EP, Halfond AL et al. Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multiplicity. Oncotarget 2014; 5: 1502–1514.

    Article  Google Scholar 

  39. LoRusso PM, Krishnamurthi SS, Rinehart JJ, Nabell LM, Malburg L, Chapman PB et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res 2010; 16: 1924–1937.

    Article  CAS  Google Scholar 

  40. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H et al. The selectivity of protein kinase inhibitors: a further update. Biochem J 2007; 408: 297–315.

    Article  CAS  Google Scholar 

  41. Haura EB, Ricart AD, Larson TG, Stella PJ, Bazhenova L, Miller VA et al. A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res 2010; 16: 2450–2457.

    Article  CAS  Google Scholar 

  42. Ndubaku CO, Crawford JJ, Drobnick J, Aliagas I, Campbell D, Dong P et al. Design of Selective PAK1 Inhibitor G-5555: improving properties by employing an unorthodox Low-pK a polar moiety. ACS Med Chem Lett 2015; 6: 1241–1246.

    Article  CAS  Google Scholar 

  43. Karpov AS, Amiri P, Bellamacina C, Bellance MH, Breitenstein W, Daniel D et al. Optimization of a dibenzodiazepine hit to a potent and selective allosteric PAK1 inhibitor. ACS Med Chem Lett 2015; 6: 776–781.

    Article  CAS  Google Scholar 

  44. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  45. Connolly DC, Hensley HH . Xenograft and transgenic mouse models of epithelial ovarian cancer and non invasive imaging modalities to monitor ovarian tumor growth in situ -applications in evaluating novel therapeutic agents. Curr Protoc Pharmacol 2009; 45: 14 12 11–14 12 26.

    Google Scholar 

Download references

Acknowledgements

We thank Timothy Cripe and Nancy Ratner for providing MPNST cell lines, Ahmet Hoke for providing immortalized HSC, Maureen Murphy for providing construct pWZL-Luc, Genentech for providing Frax1036, and Erica Golemis for commentary. This work was supported by grants from the NIH (RO1 CA142928), and the Children's Tumor Foundation (2011–15–012) to Jonathan Chernoff, NIH CORE Grant P30 CA006927 and an appropriation fromthe state of Pennsylvania to the Fox Chase Cancer Center. In vitro studies were supported by RSF grant 14-24-00106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Chernoff.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, G., Stepanova, D., Dubyk, C. et al. Targeting group I p21-activated kinases to control malignant peripheral nerve sheath tumor growth and metastasis. Oncogene 36, 5421–5431 (2017). https://doi.org/10.1038/onc.2017.143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.143

This article is cited by

Search

Quick links