Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Ribonucleotide reductase represents a novel therapeutic target in primary effusion lymphoma

Abstract

Primary effusion lymphoma (PEL) is a highly aggressive B-cell malignancy that is closely associated with one of oncogenic viruses infection, Kaposi’s sarcoma-associated herpesvirus. PEL prognosis is poor and patients barely survive >6 months even following active chemotherapy interventions. There is therefore an urgent need to discover more effective targets for PEL management. We recently found that the ribonucleotide reductase (RR) subunit M2 is potentially regulated by the key oncogenic hepatocyte growth factor/c-MET pathway in PEL. In this study, we set to investigate the role of RR in PEL pathogenesis and to evaluate its potential as a therapeutic target. We report that the RR inhibitor 3-AP actively induces PEL cell cycle arrest through inhibiting the activity of the nuclear factor-κB pathway. Using a xenograft model, we found that 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) effectively suppresses PEL progression in immunodeficient mice. Transcriptome analysis of 3-AP-treated PEL cell lines reveals altered cellular genes, most of whose roles in PEL have not yet been reported. Taken together, we propose that RR and its signaling pathway may serve as novel actionable targets for PEL management.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 1994; 266: 1865–1869.

    Article  CAS  PubMed  Google Scholar 

  2. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM . Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995; 332: 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  3. Chen YB, Rahemtullah A, Hochberg E . Primary effusion lymphoma. Oncologist 2007; 12: 569–576.

    Article  PubMed  Google Scholar 

  4. Simonelli C, Spina M, Cinelli R, Talamini R, Tedeschi R, Gloghini A et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol 2003; 21: 3948–3954.

    Article  PubMed  Google Scholar 

  5. Boulanger E, Gerard L, Gabarre J, Molina JM, Rapp C, Abino JF et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol 2005; 23: 4372–4380.

    Article  PubMed  Google Scholar 

  6. Qin Z, Dai L, Bratoeva M, Slomiany MG, Toole BP, Parsons C . Cooperative roles for emmprin and LYVE-1 in the regulation of chemoresistance for primary effusion lymphoma. Leukemia 2011; 25: 1598–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flepisi BT, Bouic P, Sissolak G, Rosenkranz B . Drug-drug interactions in HIV positive cancer patients. Biomed Pharmacother 2014; 68: 665–677.

    Article  CAS  PubMed  Google Scholar 

  8. Dai L, Trillo-Tinoco J, Cao Y, Bonstaff K, Doyle L, Del Valle L et al. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma. Blood 2015; 126: 2821–2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou B, Su L, Hu S, Hu W, Yip ML, Wu J et al. A small-molecule blocking ribonucleotide reductase holoenzyme formation inhibits cancer cell growth and overcomes drug resistance. Cancer Res 2013; 73: 6484–6493.

    Article  CAS  PubMed  Google Scholar 

  10. Larsson A, Stenberg K, Ericson AC, Haglund U, Yisak WA, Johansson NG et al. Mode of action, toxicity, pharmacokinetics, and efficacy of some new antiherpesvirus guanosine analogs related to buciclovir. Antimicrob Agents Chemother 1986; 30: 598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan H, Villegas C, Huang A, Wright JA . The mammalian ribonucleotide reductase R2 component cooperates with a variety of oncogenes in mechanisms of cellular transformation. Cancer Res 1998; 58: 1650–1653.

    CAS  PubMed  Google Scholar 

  12. Fan H, Huang A, Villegas C, Wright JA . The R1 component of mammalian ribonucleotide reductase has malignancy-suppressing activity as demonstrated by gene transfer experiments. Proc Natl Acad Sci USA 1997; 94: 13181–13186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwaki T, Iwaki A, Fukumaki Y, Tateishi J . Alpha B-crystallin in C6 glioma cells supports their survival in elevated extracellular K+: the implication of a protective role of alpha B-crystallin accumulation in reactive glia. Brain Res 1995; 673: 47–52.

    Article  CAS  PubMed  Google Scholar 

  14. Liu SQ, Saijo K, Todoroki T, Ohno T . Induction of human autologous cytotoxic T lymphocytes on formalin-fixed and paraffin-embedded tumour sections. Nat Med 1995; 1: 267–271.

    Article  CAS  PubMed  Google Scholar 

  15. Georgakilas AG, Martin OA, Bonner WM . p21: a two-faced genome guardian. Trends Mol Med 2017; 23: 310–319 pii: S1471-4914(17)30020-5.

    Article  CAS  PubMed  Google Scholar 

  16. Sarek G, Ma L, Enback J, Jarviluoma A, Moreau P, Haas J et al. Kaposi's sarcoma herpesvirus lytic replication compromises apoptotic response to p53 reactivation in virus-induced lymphomas. Oncogene 2013; 32: 1091–1098.

    Article  CAS  PubMed  Google Scholar 

  17. Chen W, Hilton IB, Staudt MR, Burd CE, Dittmer DP Distinct p53, p53:LANA, and LANA complexes in Kaposi's sarcoma-associated herpesvirus lymphomasJ Virol 2010; 84: 3898–3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gottwein E, Cullen BR . A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J Virol 2010; 84: 5229–5237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin Z, Dai L, Trillo-Tinoco J, Senkal C, Wang W, Reske T et al. Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol Cancer Ther 2014; 13: 154–164.

    Article  CAS  PubMed  Google Scholar 

  20. Defee MR, Qin Z, Dai L, Toole BP, Isaacs JS, Parsons CH . Extracellular Hsp90 serves as a co-factor for NF-kappaB activation and cellular pathogenesis induced by an oncogenic herpesvirus. Am J Cancer Res 2011; 1: 687–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai L, Trillo-Tinoco J, Bai L, Kang B, Xu Z, Wen X et al. Systematic analysis of a xenograft mice model for KSHV+ primary effusion lymphoma (PEL). PLoS One 2014; 9: e90349.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sasai K, Treekitkarnmongkol W, Kai K, Katayama H, Sen S . Functional significance of aurora kinases-p53 protein family interactions in cancer. Front Oncol 2016; 6: 247.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Falchook GS, Bastida CC, Kurzrock R . Aurora kinase inhibitors in oncology clinical trials: current state of the progress. Semin Oncol 2015; 42: 832–848.

    Article  CAS  PubMed  Google Scholar 

  24. Toole BP . Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 2004; 4: 528–539.

    Article  CAS  PubMed  Google Scholar 

  25. Nyholm S, Thelander L, Graslund A . Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyurea. Biochemistry 1993; 32: 11569–11574.

    Article  CAS  PubMed  Google Scholar 

  26. Yen Y, Margolin K, Doroshow J, Fishman M, Johnson B, Clairmont C et al. A phase I trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone in combination with gemcitabine for patients with advanced cancer. Cancer Chemother Pharmacol 2004; 54: 331–342.

    Article  CAS  PubMed  Google Scholar 

  27. Stadler WM, Desai AA, Quinn DI, Bukowski R, Poiesz B, Kardinal CG et al. A phase I/II study of GTI-2040 and capecitabine in patients with renal cell carcinoma. Cancer Chemother Pharmacol 2008; 61: 689–694.

    Article  CAS  PubMed  Google Scholar 

  28. Shao J, Zhou B, Zhu L, Bilio AJ, Su L, Yuan YC et al. Determination of the potency and subunit-selectivity of ribonucleotide reductase inhibitors with a recombinant-holoenzyme-based in vitro assay. Biochem Pharmacol 2005; 69: 627–634.

    Article  CAS  PubMed  Google Scholar 

  29. Weinberg ED . The role of iron in cancer. Eur J Cancer Prev 1996; 5: 19–36.

    CAS  PubMed  Google Scholar 

  30. Cazzola M, Bergamaschi G, Dezza L, Arosio P . Manipulations of cellular iron metabolism for modulating normal and malignant cell proliferation: achievements and prospects. Blood 1990; 75: 1903–1919.

    CAS  PubMed  Google Scholar 

  31. Simonart T . Iron: a target for the management of Kaposi's sarcoma? BMC Cancer 2004; 4: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Simonart T, Degraef C, Andrei G, Mosselmans R, Hermans P, Van Vooren JP et al. Iron chelators inhibit the growth and induce the apoptosis of Kaposi's sarcoma cells and of their putative endothelial precursors. J Invest Dermatol 2000; 115: 893–900.

    Article  CAS  PubMed  Google Scholar 

  33. Dai L, Trillo-Tinoco J, Chen Y, Bonstaff K, Del Valle L, Parsons C et al. CD147 and downstream ADAMTSs promote the tumorigenicity of Kaposi's sarcoma-associated herpesvirus infected endothelial cells. Oncotarget 2016; 7: 3806–3818.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from a DOD Career Development Award (CA140437), the Leukemia Research Foundation, the Louisiana Clinical and Translational Science Center Pilot grants (U54GM104940 from NIH), NIH RO1s (AI101046 and AI106676), as well as awards from the National Natural Science Foundation of China (81472547, 81672924 and 81400164). Funding sources had no role in the study design, data collection/analysis, decision to publish and/or manuscript preparation.

Author contributions

LD and ZQ designed and performed experiments, analyzed results, wrote the manuscript, and ZQ is the corresponding author. ZL and JQ performed experiments. ZL, YC and EKF performed statistical analysis or provided critical input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Qin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Lin, Z., Qiao, J. et al. Ribonucleotide reductase represents a novel therapeutic target in primary effusion lymphoma. Oncogene 36, 5068–5074 (2017). https://doi.org/10.1038/onc.2017.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.122

This article is cited by

Search

Quick links