Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sensitization of retinoids and corticoids to epigenetic drugs in MYC-activated lung cancers by antitumor reprogramming

Abstract

Components of the SWI/SNF chromatin remodeling complex, including BRG1 (also SMARCA4), are inactivated in cancer. Among other functions, SWI/SNF orchestrates the response to retinoid acid (RA) and glucocorticoids (GC) involving downregulation of MYC. The epigenetic drugs SAHA and azacytidine, as well as RA and GC, are currently being used to treat some malignancies but their therapeutic potential in lung cancer is not well established. Here we aimed to determine the possible therapeutic effects of azacytidine and SAHA (A/S) alone or in combination with GC plus RA (GC/RA) in lung cancers with either BRG1 inactivation or MYC amplification. In vitro, responses to GC/RA treatment were more effective in MYC-amplified cells. These effects were mediated by BRG1 and involved a reprogramming towards prodifferentiation gene expression signatures and downregulation of MYC. In MYC-amplified cells, administration of GC/RA enhanced the cell growth inhibitory effects of A/S which, in turn, accentuated the prodifferentiation features promoted by GC/RA. Finally, these treatments improved overall survival of mice orthotopically implanted with MYC-amplified, but not BRG1-mutant, cells and reduced tumor cell viability and proliferation. We propose that the combination of epigenetic treatments with retinoids and corticoids of MYC-driven lung tumors constitute a strategy for therapeutic intervention in this otherwise incurable disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wilson GB, Roberts CWM . SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 2011; 11: 481–492.

    Article  CAS  Google Scholar 

  2. Romero OA, Sanchez-Cespedes M . The SWI/SNF genetic blockade: effects in cell differentiation, cancer and developmental diseases. Oncogene 2014; 33: 2681–2689.

    Article  CAS  Google Scholar 

  3. Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J, Sanchez-Cespedes M . Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 2008; 29: 617–622a.

    Article  CAS  Google Scholar 

  4. Rodriguez-Nieto S, Cañada A, Pros E, Pinto AI, Torres-Lanzas J, Lopez-Rios F et al. Massive parallel DNA pyrosequencing analysis of the tumor suppressor BRG1/SMARCA4 in lung primary tumors. Hum Mutat 2011; 32: E1999–E2017.

    Article  CAS  Google Scholar 

  5. Romero OA, Setien F, John S, Gimenez-Xavier P, Gómez-López G, Pisano D et al. The tumour suppressor and chromatin-remodelling factor BRG1 antagonizes Myc activity and promotes cell differentiation in human cancer. EMBO Mol Med 2012; 4: 603–616.

    Article  CAS  Google Scholar 

  6. Romero OA, Torres-Diz M, Pros E, Savola S, Gomez A, Moran S et al. MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov 2014; 4: 292–303.

    Article  CAS  Google Scholar 

  7. Cheng SW, Davies KP, Yung E, Beltran RJ, Yu J, Kalpana GV . c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat Genet 1999; 22: 102–105.

    Article  CAS  Google Scholar 

  8. Pal S, Yun R, Datta A, Lacomis L, Erdjument-Bromage H, Kumar J et al. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol Cell Biol 2003; 23: 7475–7487.

    Article  CAS  Google Scholar 

  9. Peterson CL, Dingwall A, Scott MP . Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci USA 1994; 91: 2905–2908.

    Article  CAS  Google Scholar 

  10. Kwon H, Imbalzano AN, Khavari PA et al. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 1994; 370: 477–481.

    Article  CAS  Google Scholar 

  11. De la Serna IL, Carlson KA, Imbalzano AN . Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 2001; 27: 187–190.

    Article  CAS  Google Scholar 

  12. Seo S, Richardson GA, Kroll KL . The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 2005; 132: 105–151.

    Article  CAS  Google Scholar 

  13. Chi TH, Wan M, Lee PP, Akashi K, Metzger D, Chambon P et al. Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 2003; 19: 169–182.

    Article  CAS  Google Scholar 

  14. Chiba H, Muramatsu M, Nomoto A, Kato H . Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res 1994; 22: 1815–1820.

    Article  CAS  Google Scholar 

  15. Ostlund Farrants AK, Blomquist P, Kwon H, Wrange O . Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol Cell Biol 1997; 17: 895–905.

    Article  CAS  Google Scholar 

  16. Fryer CJ, Archer TK . Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 1998; 393: 88–91.

    Article  CAS  Google Scholar 

  17. Flajollet S, Lefebvre B, Cudejko C, Staels B, Lefebvre P . The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor. Mol Cell Endocrinol 2007; 270: 23–32.

    Article  CAS  Google Scholar 

  18. Johnson TA, Elbi C, Parekh BS, Hager GL, John S . Chromatin remodeling complexes interact dynamically with a glucocorticoid receptor-regulated promoter. Mol Biol Cell 2008; 19: 3308–3322.

    Article  CAS  Google Scholar 

  19. Maeda Y, Davé V, Whitsett JA . Transcriptional control of lung morphogenesis. Physiol Rev 2007; 87: 219–244.

    Article  CAS  Google Scholar 

  20. Sionov RV, Spokoini R, Kfir-Erenfeld S, Cohen O, Yefenof E . Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2008; 101: 127–248.

    Article  CAS  Google Scholar 

  21. Schenk T, Stengel S, Zelent A . Unlocking the potential of retinoic acid in anticancer therapy. Br J Cancer 2014; 111: 2039–2045.

    Article  CAS  Google Scholar 

  22. Collins SJ . The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 2002; 16: 1896–1905.

    Article  CAS  Google Scholar 

  23. Rutz HP . Effects of corticosteroid use on treatment of solid tumours. Lancet 2002; 360: 1969–1970.

    Article  CAS  Google Scholar 

  24. Pottier N, Yang W, Assem M, Panetta JC, Pei D, Paugh SW et al. The SWI/SNF chromatin-remodeling complex and glucocorticoid resistance in acute lymphoblastic leukemia. J Natl Cancer Inst 2008; 100: 1792–1803.

    Article  CAS  Google Scholar 

  25. Siegel D, Hussein M, Belani C, Robert F, Galanis E, Richon VM et al. Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2009; 2: 31.

    Article  Google Scholar 

  26. Liu SV, Fabbri M, Gitlitz BJ, Laird-Offringa IA . Epigenetic therapy in lung cancer. Front Oncol 2013; 3: 135.

    Article  Google Scholar 

  27. Vendetti FP, Rudin CM . Epigenetic therapy in non-small-cell lung cancer: targeting DNA methyltransferases and histone deacetylases. Expert Opin Biol Ther 2013; 13: 1273–1285.

    Article  CAS  Google Scholar 

  28. Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 2011; 1: 598–607.

    Article  CAS  Google Scholar 

  29. McDermott U, Sharma SV, Dowell L, Greninger P, Montagut C, Lamb J et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc Natl Acad Sci USA 2007; 104: 19936–19941.

    Article  CAS  Google Scholar 

  30. Facchini LM, Chen S, Marhin WW, Lear JN, Penn LZ . The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-myc P2 minimal promoter. Mol Cell Biol 1997; 17: 100–114.

    Article  CAS  Google Scholar 

  31. Sivak LE, Tai KF, Smith RS, Dillon PA, Brodeur GM, Carroll WL . Autoregulation of the human N-myc oncogene is disrupted in amplified but not single-copy neuroblastoma cell lines. Oncogene 1997; 15: 1937–1946.

    Article  CAS  Google Scholar 

  32. Borczuk AC, Gorenstein L, Walter KL, Assaad AA, Wang L, Powell CA . Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol 2003; 163: 1949–1960.

    Article  CAS  Google Scholar 

  33. Angulo B, Suarez-Gauthier A, Lopez-Rios F, Medina PP, Conde E, Tang M et al. Expression signatures in lung cancer reveal a profile for EGFR-mutant tumours and identify selective PIK3CA overexpression by gene amplification. J Pathol 2008; 214: 347–356.

    Article  CAS  Google Scholar 

  34. Castillo SD, Matheu A, Mariani N, Carretero J, Lopez-Rios F, Lovell-Badge R et al. Novel transcriptional targets of the SRY-HMG box transcription factor SOX4 link its expression to the development of small cell lung cancer. Cancer Res 2012; 72: 176–186.

    Article  CAS  Google Scholar 

  35. Bogue CW, Gross I, Vasavada H, Dynia DW, Wilson CM, Jacobs HC . Identification of Hox genes in newborn lung and effects of gestational age and retinoic acid on their expression. Am J Physiol 1994; 266: L448–L454.

    Article  CAS  Google Scholar 

  36. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M . Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 2011; 6: 692–702.

    Article  CAS  Google Scholar 

  37. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM et al. High density DNA methylation array with single CpG site resolution. Genomics 2011; 98: 288–295.

    Article  CAS  Google Scholar 

  38. Bonastre E, Verdura S, Zondervan I, Facchinetti F, Lantuejoul S, Chiara MD et al. PARD3 inactivation in lung squamous cell carcinomas impairs STAT3 and promotes malignant invasion. Cancer Res 2015; 75: 1287–1297.

    Article  CAS  Google Scholar 

  39. Saffiotti U, Montesano R, Sellakumar AR, Borg SA . Experimental cancer of the lung. Inhibition by vitamin A of the induction of tracheobronchial squamous metaplasia and squamous cell tumors. Cancer 1967; 20: 857–864.

    Article  CAS  Google Scholar 

  40. Malpel S, Mendelsohn C, Cardoso WV . Regulation of retinoic acid signaling during lung morphogenesis. Development 2000; 127: 3057–3067.

    CAS  PubMed  Google Scholar 

  41. Shi W, Chen F, Cardoso WV . Mechanisms of lung development contribution to adult lung disease and relevance to chronic obstructive pulmonary disease. Proc Am Thorac Soc 2009; 6: 558–563.

    Article  CAS  Google Scholar 

  42. Greenberg AK, Hu J, Basu S, Hay J, Reibman J, Yie TA et al. Glucocorticoids inhibit lung cancer cell growth through both the extracellular signal-related kinase pathway and cell cycle regulators. Am J Respir Cell Mol Biol 2002; 27: 320–328.

    Article  CAS  Google Scholar 

  43. Geradts J, Chen JY, Russell EK, Yankaskas JR, Nieves L, Minna JD . Human lung cancer cell lines exhibit resistance to retinoic acid treatment. Cell Growth Differ 1993; 4: 799–809.

    CAS  PubMed  Google Scholar 

  44. Thulasi R, Harbour DV, Thompson EB . Suppression of c-myc is a critical step in glucocorticoid-induced human leukemic cell lysis. J Biol Chem 1993; 268: 18306–18312.

    CAS  PubMed  Google Scholar 

  45. Nagl Jr NG, Zweitzig DR, Thimmapaya B, Beck Jr GR, Moran E . The c-myc gene is a direct target of mammalian SWI/SNF-related complexes during differentiation-associated cell cycle arrest. Cancer Res 2006; 66: 1289–1293.

    Article  CAS  Google Scholar 

  46. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  Google Scholar 

  47. Sharm SV, Settleman J . Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev 2007; 21: 3214–3231.

    Article  Google Scholar 

  48. San-Miguel JF, Hungria VT, Yoon SS, Beksac M, Dimopoulos MA, Elghandour A et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol 2014; 15: 1195–1206.

    Article  CAS  Google Scholar 

  49. Hopfinger G, Nösslinger T, Lang A, Linkesch W, Melchardt T, Weiss L et al. Lenalidomide in combination with vorinostat and dexamethasone for the treatment of relapsed/refractory peripheral T cell lymphoma (PTCL): report of a phase I/II trial. Ann Hematol 2014; 93: 459–462.

    Article  CAS  Google Scholar 

  50. Hahn CK, Ross KN, Warrington IM, Mazitschek R, Kanegai CM, Wright RD et al. Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc Natl Acad Sci USA 2008; 105: 9751–9756.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Patricia Cabral (Genes and Cancer Group) at IDIBELL for technical assistance. This work was supported by the grants from the Spanish MINECO SAF2011-22897, Institute of Health Carlos III (ISCIII)-PIE13/00022 (ONCOPROFILE) and RTICC (RD12/0036/0045 to MS-C and RD12/0036/0039 to ME) and a grant from the Fundación Científica Asociacion Española Contra el Cáncer-GCB14-2170. MT-D is supported by a fellowship from the Spanish MINECO. Funding was also provided by the European Union Seventh Framework Programme (FP7/2007-13), under grant agreement HEALTH-F2-2010-258677–CURELUNG.

Author contributions

OAR, MT-D and SV performed and analyzed most of the experiments. SM performed the DNA methylation microarrays. AG and SM analyzed the bioinformatic data. SV and EC performed and analyzed the histopathological work. AV generated the mouse models and designed/supervised the mouse work. ME supervised the global DNA methylation analysis. OAR and MS-C designed the overall study. MS-C supervised the research and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sanchez-Cespedes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, O., Verdura, S., Torres-Diz, M. et al. Sensitization of retinoids and corticoids to epigenetic drugs in MYC-activated lung cancers by antitumor reprogramming. Oncogene 36, 1287–1296 (2017). https://doi.org/10.1038/onc.2016.296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.296

This article is cited by

Search

Quick links