Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer

Subjects

Abstract

SCFSkp2/Cks1 ubiquitinates Thr187-phosphorylated p27 for degradation. Overexpression of Skp2 coupled with underexpression of p27 are frequent characteristics of cancer cells. When the role of SCFSkp2/Cks1-mediated p27 ubiquitination in cancer was specifically tested by p27 Thr187-to-Ala knockin (p27T187A KI), it was found dispensable for KrasG12D-induced lung tumorigenesis but essential for Rb1-deficient pituitary tumorigenesis. Here we identify pRb and p53 doubly deficient (DKO) prostate tumorigenesis as a context in which p27 ubiquitination by SCFSkp2/Cks1 is required for p27 downregulation. p27 protein accumulated in prostate when p27T187A KI mice underwent DKO prostate tumorigenesis. p27T187A KI or Skp2 knockdown (KD) induced similar degrees of p27 protein accumulation in DKO prostate cells, and Skp2 KD did not further increase p27 protein in DKO prostate cells that contained p27T187A KI (AADKO prostate cells). p27T187A KI activated an E2F1-p73-apoptosis axis in DKO prostate tumorigenesis, slowed disease progression and significantly extended survival. Querying co-occurrence relationships among RB1, TP53, PTEN, NKX3-1 and MYC in TCGA of prostate cancer identified co-inactivation of RB1 and TP53 as the only statistically significant co-occurrences in metastatic castration-resistant prostate cancer (mCRPC). Together, our study identifies Skp2/Cks1 pocket inhibitors as potential therapeutics for mCRPC. Procedures for establishing mCRPC organoid cultures from contemporary patients were recently established. An Skp2/Cks1 pocket inhibitor preferentially collapsed DKO prostate tumor organoids over AADKO organoids, which spontaneously disintegrated over time when DKO prostate tumor organoids grew larger, setting the stage to translate mouse model findings to precision medicine in the clinic on the organoid platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Starostina NG, Kipreos ET . Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors. Trends Cell Biol 2012; 22: 33–41.

    Article  CAS  PubMed  Google Scholar 

  2. Vlach J, Hennecke S, Amati B . Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 1997; 16: 5334–5344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev 1999; 13: 1181–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M et al. The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nat Cell Biol 2001; 3: 321–324.

    Article  CAS  PubMed  Google Scholar 

  5. Spruck C, Strohmaier H, Watson M, Smith APL, Ryan A, Krek W et al. A CDK-independent function of mammalian Cks1: targeting of SCFSkp2 to the CDK inhibitor p27Kip1. Mol Cell 2001; 7: 639–650.

    Article  CAS  PubMed  Google Scholar 

  6. Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, Pagano M et al. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol Cell 2005; 20: 9–19.

    Article  CAS  PubMed  Google Scholar 

  7. Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakidis TR, Roberts JM . A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 2001; 413: 323–327.

    Article  CAS  PubMed  Google Scholar 

  8. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ . The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 1998; 396: 177–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chu IM, Hengst L, Slingerland JM . The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8: 253–267.

    Article  CAS  PubMed  Google Scholar 

  10. Timmerbeul I, Garrett-Engele CM, Kossatz U, Chen X, Firpo E, Grunwald V et al. Testing the importance of p27 degradation by the SCFskp2 pathway in murine models of lung and colon cancer. Proc Natl Acad Sci USA 2006; 103: 14009–14014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park MS, Rosai J, Nguyen HT, Capodieci P, Cordon-Cardo C, Koff A . p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice. Proc Natl Acad Sci USA 1999; 96: 6382–6387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao H, Bauzon F, Bi E, Yu JJ, Fu H, Lu Z et al. Substituting threonine187 with alanine in p27Kip1 prevents pituitary tumorigenesis by two-hit loss of Rb1 and enhances humoral immunity in old age. J Biol Chem 2015; 290: 5797–5809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ . Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem Biology 2012; 19: 1515–1524.

    Article  CAS  Google Scholar 

  14. Skaar JR, Pagan JK, Pagano M . SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Disc 2014; 13: 889–903.

    Article  CAS  Google Scholar 

  15. Wang H, Bauzon F, Ji P, Xu X, Sun D, Locker J et al. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/- mice. Nat Genet 2010; 42: 83–88.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao H, Bauzon F, Fu H, Lu Z, Cui J, Nakayama K et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell 2013 11; 24: 645–659.

    Article  CAS  PubMed  Google Scholar 

  17. Lu Z, Bauzon F, Fu H, Cui J, Zhao H, Nakayama K et al. Skp2 suppresses apoptosis in Rb1-deficient tumours by limiting E2F1 activity. Nat Commun 2014; 5: 3463.

    Article  PubMed  Google Scholar 

  18. Candi E, Agostini M, Melino G, Bernassola F . How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat 2014; 35: 702–714.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 2006; 66: 7889–7898.

    Article  CAS  PubMed  Google Scholar 

  20. Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 2000; 19: 2069–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014; 159: 176–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang G, Ayala G, De Marzo A, Tian W, Frolov A, Wheeler TM et al. Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res 2002; 8: 3419–3426.

    CAS  PubMed  Google Scholar 

  25. Ji P, Jiang H, Rekhtman K, Bloom J, Ichetovkin M, Pagano M et al. An Rb-Skp2-p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol Cell 2004; 16: 47–58.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Wang C . F-box protein Skp2: a novel transcriptional target of E2F. Oncogene 2005; 25: 2615–2627.

    Article  Google Scholar 

  27. Yung Y, Walker JL, Roberts JM, Assoian RK . A Skp2 autoinduction loop and restriction point control. J Cell Biol 2007; 178: 741–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Binne UK, Classon MK, Dick FA, Wei W, Rape M, Kaelin WG Jr et al. Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit. Nat Cell Biol 2007; 9: 225–232.

    Article  CAS  PubMed  Google Scholar 

  29. Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang H et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol 2001; 11: 263–267.

    Article  CAS  PubMed  Google Scholar 

  30. Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 2010; 464: 374–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hattori T, Isobe T, Abe K, Kikuchi H, Kitagawa K, Oda T et al. Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. Cancer Res 2007; 67: 10789–10795.

    Article  CAS  PubMed  Google Scholar 

  32. Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 2004; 6: 1229–1235.

    Article  CAS  PubMed  Google Scholar 

  33. Miranda-Carboni GA, Krum SA, Yee K, Nava M, Deng QE, Pervin S et al. A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors. Genes Dev 2008; 22: 3121–3134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao X, Xue L, Han L, Ma L, Chen T, Tong T . WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) delays cellular senescence by promoting p27(Kip1) degradation in human diploid fibroblasts. J Biol Chem 2011; 286: 33447–33456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bassermann F, Eichner R, Pagano M . The ubiquitin proteasome system - implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta 2014; 1843: 150–162.

    Article  CAS  PubMed  Google Scholar 

  36. Orlowski RZ, Kuhn DJ . Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 2008; 14: 1649–1657.

    Article  CAS  PubMed  Google Scholar 

  37. Morris MJ, Kelly WK, Slovin S, Ryan C, Eicher C, Heller G et al. A phase II trial of bortezomib and prednisone for castration resistant metastatic prostate cancer. J Urol 2007; 178: 2378–2383.

    Article  CAS  PubMed  Google Scholar 

  38. Jin Y, Lee H, Zeng SX, Dai MS, Lu H . MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation. EMBO J 2003; 22: 6365–6377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amador V, Ge S, Santamaria PG, Guardavaccaro D, Pagano M . APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol Cell 2007; 27: 462–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Havens CG, Walter JC . Docking of a specialized PIP box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol Cell 2009; 35: 93–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Starostina NG, Simpliciano JM, McGuirk MA, Kipreos ET . CRL2(LRR-1) targets a CDK inhibitor for cell cycle control in C. elegans and actin-based motility regulation in human cells. Dev Cell 2010; 19: 753–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 2013; 154: 556–568.

    Article  CAS  PubMed  Google Scholar 

  43. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF . Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 1978; 21: 274–281.

    Article  CAS  PubMed  Google Scholar 

  44. Gillet JP, Varma S, Gottesman MM . The clinical relevance of cancer cell lines. J Natl Cancer Inst 2013; 105: 452–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Domcke S, Sinha R, Levine DA, Sander C, Schultz N . Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun 2013; 4: 2126.

    Article  PubMed  Google Scholar 

  46. Sato T, Clevers H . SnapShot: growing organoids from stem cells. Cell 2015; 161: 1700–e1.

    Article  CAS  PubMed  Google Scholar 

  47. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015; 161: 933–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 2014; 159: 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ, Bergren SK et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol 2014; 16: 951–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ et al. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 2001; 101: 61–69.

    Article  CAS  PubMed  Google Scholar 

  51. Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T . Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 2003; 424: 223–228.

    Article  CAS  PubMed  Google Scholar 

  52. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 2001; 29: 418–425.

    Article  CAS  PubMed  Google Scholar 

  53. Sun D, Melegari M, Sridhar S, Rogler CE, Zhu L . A multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. BioTechniques 2006; 41: 59–63.

    Article  CAS  PubMed  Google Scholar 

  54. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012; 44: 685–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. TCGA. The molecular taxonomy of primary prostate cancer. Cell 2015; 163: 1011–1025.

    Article  Google Scholar 

  57. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161: 1215–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants RO1CA127901and RO1CA131421 (LZ), Albert Einstein Comprehensive Cancer Research Center (5P30CA13330) and Liver Research Center (5P30DK061153) provided core facility support. HZ was a recipient of DOD PCRP Postdoctoral Fellowship (PC121837), and LZ was a Irma T Hirschl Career Scientist Award recipient. We thank Dr James Roberts for providing the p27T187A KI mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Zhu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Lu, Z., Bauzon, F. et al. p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer. Oncogene 36, 60–70 (2017). https://doi.org/10.1038/onc.2016.175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.175

This article is cited by

Search

Quick links