Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment

Subjects

Abstract

Cancer cells grow in an environment comprised of multiple components that support tumor growth and contribute to therapy resistance. Major cell types in the tumor microenvironment are fibroblasts, endothelial cells and infiltrating immune cells all of which communicate with cancer cells. One way that these cell types promote cancer progression is by altering the expression of microRNAs (miRNAs), small noncoding RNAs that negatively regulate protein expression, either in the cancer cells or in the associated normal cells. Changes in miRNA expression can be brought about by direct interaction between the stromal cells and cancer cells, by paracrine factors secreted by any of the cell types or even through direct communication between cells through secreted miRNAs. Understanding the role of miRNAs in the complex interactions between the tumor and cells in its microenvironment is necessary if we are to understand tumor progression and devise new treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

VE-cadherin:

vascular endothelial cadherin

IGFBP2:

insulin-like growth factor-binding protein 2

MERTK:

c-mer proto-oncogene tyrosine kinase

MMP-2:

matrix metallopeptidase 2

VEGF:

vascular endothelial growth factor

HIF1A:

hypoxia inducible factor 1, alpha subunit

IL:

interleukin

VEGFR:

vascular endothelial growth factor receptor

TGF-β:

transforming growth factor beta

ETS2:

v-ets avian erythroblastosis virus E26 oncogene homolog 2

EMILIN2:

elastin microfibril interfacer 2

CCL5:

chemokine (C-C motif) ligand 5

PTEN:

phosphatase and tensin homolog

SOCS1:

suppressor of cytokine signaling 1

STAT3:

signal transducer and activator of transcription 3

CEBPB:

CCAAT/enhancer binding protein (C/EBP), beta

HCC:

hepatocellular carcinoma

PDGFRA:

platelet-derived growth factor receptor, alpha polypeptide

FGF:

fibroblast growth factor

EMT:

epithelial-to-mesenchymal transition

MDSC:

myeloid-derived suppressor cell

AKT:

v-akt murine thymoma viral oncogene homolog

OvCa:

ovarian cancer

TAM:

tumor-associated macrophage

MSC:

mesenchymal stem cell

TLR:

Toll-like receptor

References

  1. Hanahan D, Coussens LM . Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309–322.

    Article  CAS  PubMed  Google Scholar 

  2. Connolly JL, Schnitt SJ, Wang HH, Longtine JA, Dvorak A, Dvorak HF . Tumor Structure and Tumor Stroma Generation. http://www.ncbi.nlm.nih.gov/books/NBK13447/. BC Decker Inc.: Hamilton, ON, USA, 2003.

  3. Junttila MR, de Sauvage FJ . Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013; 501: 346–354.

    CAS  PubMed  Google Scholar 

  4. Orimo A, Gupta P, Sgroi D, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis throught elevated SDF-1/CXCL 12 secretion. Cell 2005; 121: 335–348.

    CAS  PubMed  Google Scholar 

  5. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    CAS  PubMed  Google Scholar 

  6. Tuhkanen H, Anttila M, Kosma VM, Heinonen S, Juhola M, Helisalmi S et al. Frequent gene dosage alterations in stromal cells of epithelial ovarian carcinomas. Int J Cancer 2006; 119: 1345–1353.

    CAS  PubMed  Google Scholar 

  7. Qiu W, Hu M, Sridhar A, Opeskin K, Fox S, Shipitsin M et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 2008; 40: 650–655.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 2005; 37: 899–905.

    CAS  PubMed  Google Scholar 

  9. Noy R, Pollard JW . Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014; 41: 49–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Schickel R, Boyerinas B, Park SM, Peter ME . MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008; 27: 5959–5974.

    CAS  PubMed  Google Scholar 

  11. Di Leva G, Garofalo M, Croce CM . MicroRNAs in cancer. Ann Rev Pathol 2014; 9: 287–314.

    CAS  Google Scholar 

  12. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38: 1060–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004; 101: 2999–3004.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Lujambio A, Lowe SW . The microcosmos of cancer. Nature 2012; 482: 347–355.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    CAS  PubMed  Google Scholar 

  16. Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT . Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 2011; 39: 1054–1065.

    CAS  PubMed  Google Scholar 

  17. Barroso-delJesus A, Romero-Lopez C, Lucena-Aguilar G, Melen GJ, Sanchez L, Ligero G et al. Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter. Mol Cell Biol 2008; 28: 6609–6619.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 2011; 476: 228–231.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhu K, Pan Q, Zhang X, Kong LQ, Fan J, Dai Z et al. MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma by promoting PDGFRA expression. Carcinogenesis 2013; 34: 2071–2079.

    CAS  PubMed  Google Scholar 

  20. Wurdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 2008; 14: 382–393.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Plummer PN, Freeman R, Taft RJ, Vider J, Sax M, Umer BA et al. MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells. Cancer Res 2013; 73: 341–352.

    CAS  PubMed  Google Scholar 

  22. Muramatsu F, Kidoya H, Naito H, Sakimoto S, Takakura N . microRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin. Oncogene 2013; 32: 414–421.

    CAS  PubMed  Google Scholar 

  23. Smits M, Wurdinger T, van het Hof B, Drexhage JA, Geerts D, Wesseling P et al. Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB J 2012; 26: 2639–2647.

    CAS  PubMed  Google Scholar 

  24. Fang L, Du WW, Yang W, Rutnam ZJ, Peng C, Li H et al. MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle 2012; 11: 4352–4365.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 2014; 33: 679–689.

    CAS  PubMed  Google Scholar 

  26. Fang JH, Zhou HC, Zeng C, Yang J, Liu Y, Huang X et al. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 2011; 54: 1729–1740.

    CAS  PubMed  Google Scholar 

  27. Png KJ, Halberg N, Yoshida M, Tavazoie SF . A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 2012; 481: 190–194.

    CAS  Google Scholar 

  28. Nilsson S, Moller C, Jirstrom K, Lee A, Busch S, Lamb R et al. Downregulation of miR-92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration. PLoS One 2012; 7: e36051.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z . GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 2013; 15: 201–213.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Wang R, Zhao N, Li S, Fang JH, Chen MX, Yang J et al. MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology 2013; 58: 642–653.

    CAS  PubMed  Google Scholar 

  31. Shih TC, Tien YJ, Wen CJ, Yeh TS, Yu MC, Huang CH et al. MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma. J Hepatol 2012; 57: 584–591.

    CAS  PubMed  Google Scholar 

  32. Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM et al. MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res 2010; 70: 2675–2685.

    CAS  PubMed  Google Scholar 

  33. Jusufovic E, Rijavec M, Keser D, Korosec P, Sodja E, Iljazovic E et al. let-7b and miR-126 are down-regulated in tumor tissue and correlate with microvessel density and survival outcomes in non—small—cell lung cancer. PLoS One 2012; 7: e45577.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C et al. Tumour angiogenesis regulation by the miR-200 family. Nature Commun 2013; 4: 2427.

    Google Scholar 

  35. Vecchione A, Belletti B, Lovat F, Volinia S, Chiappetta G, Giglio S et al. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc Natl Acad Sci USA 2013; 110: 9845–9850.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pencheva N, Tran H, Buss C, Huh D, Drobnjak M, Busam K et al. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 2012; 151: 1068–1082.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Almog N, Ma L, Schwager C, Brinkmann BG, Beheshti A, Vajkoczy P et al. Consensus micro RNAs governing the switch of dormant tumors to the fast-growing angiogenic phenotype. PLoS One 2012; 7: e44001.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene 2011; 30: 806–821.

    CAS  PubMed  Google Scholar 

  39. Roybal JD, Zang Y, Ahn YH, Yang Y, Gibbons DL, Baird BN et al. miR-200 inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1. Mol Cancer Res 2011; 9: 25–35.

    CAS  PubMed  Google Scholar 

  40. Bullock MD, Pickard KM, Nielsen BS, Sayan AE, Jenei V, Mellone M et al. Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression. Cell Death Dis 2013; 4: e684.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Yamamichi N, Shimomura R, Inada K, Sakurai K, Haraguchi T, Ozaki Y et al. Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res 2009; 15: 4009–4016.

    CAS  PubMed  Google Scholar 

  42. Nielsen BS, Jorgensen S, Fog JU, Sokilde R, Christensen IJ, Hansen U et al. High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis 2011; 28: 27–38.

    CAS  PubMed  Google Scholar 

  43. Nouraee N, Van Roosbroeck K, Vasei M, Semnani S, Samaei NM, Naghshvar F et al. Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma. PLoS One 2013; 8: e73009.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kadera BE, Li L, Toste PA, Wu N, Adams C, Dawson DW et al. MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One 2013; 8: e71978.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Yao Q, Cao S, Li C, Mengesha A, Kong B, Wei M . Micro-RNA-21 regulates TGF-beta-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction. Int J Cancer 2011; 128: 1783–1792.

    CAS  PubMed  Google Scholar 

  46. Naito Y, Sakamoto N, Oue N, Yashiro M, Sentani K, Yanagihara K et al. MicroRNA-143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Sci 2014; 105: 228–235.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, Mallardo M . Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway. Nucleic Acids Res 2008; 36: 6608–6619.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Mitra AK, Zillhardt M, Hua Y, Tiwari P, Murmann AE, Peter ME et al. MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov 2012; 2: 1100–1108.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhao L, Sun Y, Hou Y, Peng Q, Wang L, Luo H et al. MiRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer. Int J Biochem Cell Biol 2012; 44: 2051–2059.

    CAS  PubMed  Google Scholar 

  50. Aprelikova O, Yu X, Palla J, Wei BR, John S, Yi M et al. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle 2010; 9: 4387–4398.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Aprelikova O, Palla J, Hibler B, Yu X, Greer YE, Yi M et al. Silencing of miR-148a in cancer-associated fibroblasts results in WNT10B-mediated stimulation of tumor cell motility. Oncogene 2013; 32: 3246–3253.

    CAS  PubMed  Google Scholar 

  52. Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C et al. MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol 2013; 231: 388–399.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 2012; 14: 159–167.

    CAS  Google Scholar 

  54. Trimboli AJ, Cantemir-Stone CZ, Li F, Wallace JA, Merchant A, Creasap N et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 2009; 461: 1084–1091.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Mongiat M, Marastoni S, Ligresti G, Lorenzon E, Schiappacassi M, Perris R et al. The extracellular matrix glycoprotein elastin microfibril interface located protein 2: a dual role in the tumor microenvironment. Neoplasia 2010; 12: 294–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Sugiyama K, Kajiyama H, Shibata K, Yuan H, Kikkawa F, Senga T . Expression of the miR200 family of microRNAs in mesothelial cells suppresses the dissemination of ovarian cancer cells. Mol Cancer Ther 2014; 13: 2081–2091.

    CAS  PubMed  Google Scholar 

  57. Mitra AK, Chiang CY, Tiwari P, Tomar S, Watters KM, Peter ME et al. Microenvironment induced downregulation of miR-193b drives ovarian cancer metastasis. Oncogene 2014 (in press).

  58. He M, Xu Z, Ding T, Kuang DM, Zheng L . MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell Mol Immunol 2009; 6: 343–352.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Zonari E, Pucci F, Saini M, Mazzieri R, Politi LS, Gentner B et al. A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood 2013; 122: 243–252.

    CAS  PubMed  Google Scholar 

  60. Cubillos-Ruiz JR, Baird JR, Tesone AJ, Rutkowski MR, Scarlett UK, Camposeco-Jacobs AL et al. Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective immunity against ovarian cancer. Cancer Res 2012; 72: 1683–1693.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Cai X, Yin Y, Li N, Zhu D, Zhang J, Zhang CY et al. Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J Mol Cell Biol 2012; 4: 341–343.

    CAS  PubMed  Google Scholar 

  62. Sonda N, Simonato F, Peranzoni E, Cali B, Bortoluzzi S, Bisognin A et al. miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis. Immunity 2013; 38: 1236–1249.

    CAS  PubMed  Google Scholar 

  63. Chaudhuri AA, So AY, Sinha N, Gibson WS, Taganov KD, O'Connell RM et al. MicroRNA-125b potentiates macrophage activation. J Immunol 2011; 187: 5062–5068.

    CAS  PubMed  Google Scholar 

  64. Yang J, Zhang Z, Chen C, Liu Y, Si Q, Chuang TH et al. MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene 2013; 33: 3014–3023.

    PubMed  Google Scholar 

  65. El Chartouni C, Schwarzfischer L, Rehli M . Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming. Immunobiology 2010; 215: 821–825.

    CAS  PubMed  Google Scholar 

  66. Wang Q, Ni H, Lan L, Wei X, Xiang R, Wang Y . Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res 2010; 20: 701–712.

    CAS  PubMed  Google Scholar 

  67. Du J, Wang J, Tan G, Cai Z, Zhang L, Tang B et al. Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Med Oncol 2012; 29: 2814–2823.

    CAS  PubMed  Google Scholar 

  68. Chang SH, Lu YC, Li X, Hsieh WY, Xiong Y, Ghosh M et al. Antagonistic function of the RNA-binding protein HuR and miR-200b in post-transcriptional regulation of vascular endothelial growth factor-A expression and angiogenesis. J Biol Chem 2013; 288: 4908–4921.

    CAS  PubMed  Google Scholar 

  69. Squadrito ML, Pucci F, Magri L, Moi D, Gilfillan GD, Ranghetti A et al. miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep 2012; 1: 141–154.

    CAS  PubMed  Google Scholar 

  70. Liu Y, Lai L, Chen Q, Song Y, Xu S, Ma F et al. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J Immunol 2012; 188: 5500–5510.

    CAS  PubMed  Google Scholar 

  71. Liu Q, Zhang M, Jiang X, Zhang Z, Dai L, Min S et al. miR-223 suppresses differentiation of tumor-induced CD11b(+) Gr1(+) myeloid-derived suppressor cells from bone marrow cells. Int J Cancer 2011; 129: 2662–2673.

    CAS  PubMed  Google Scholar 

  72. Zhang M, Liu Q, Mi S, Liang X, Zhang Z, Su X et al. Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J Immunol 2011; 186: 4716–4724.

    CAS  PubMed  Google Scholar 

  73. Kong D, Piao YS, Yamashita S, Oshima H, Oguma K, Fushida S et al. Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene 2012; 31: 3949–3960.

    CAS  PubMed  Google Scholar 

  74. Subramani A, Alsidawi S, Jagannathan S, Sumita K, Sasaki AT, Aronow B et al. The brain microenvironment negatively regulates miRNA-768-3p to promote K-ras expression and lung cancer metastasis. Sci Rep 2013; 3: 2392.

    PubMed Central  PubMed  Google Scholar 

  75. Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 2013; 39: 611–621.

    CAS  PubMed  Google Scholar 

  76. Lwin T, Lin J, Choi YS, Zhang X, Moscinski LC, Wright KL et al. Follicular dendritic cell-dependent drug resistance of non-Hodgkin lymphoma involves cell adhesion-mediated Bim down-regulation through induction of microRNA-181a. Blood 2010; 116: 5228–5236.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Sasaki K, Kohanbash G, Hoji A, Ueda R, McDonald HA, Reinhart TA et al. miR-17-92 expression in differentiated T cells - implications for cancer immunotherapy. J Transl Med 2010; 8: 17.

    PubMed Central  PubMed  Google Scholar 

  78. Dudda JC, Salaun B, Ji Y, Palmer DC, Monnot GC, Merck E et al. MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity 2013; 38: 742–753.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Huffaker TB, Hu R, Runtsch MC, Bake E, Chen X, Zhao J et al. Epistasis between microRNAs 155 and 146a during T cell-mediated antitumor immunity. Cell Rep 2012; 2: 1697–1709.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Chen L, Ma H, Hu H, Gao L, Wang X, Ma J et al. Special role of Foxp3 for the specifically altered microRNAs in regulatory T cells of HCC patients. BMC Cancer 2014; 14: 489.

    PubMed Central  PubMed  Google Scholar 

  81. Wei J, Wang F, Kong LY, Xu S, Doucette T, Ferguson SD et al. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res 2013; 73: 3913–3926.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S et al. TGF-beta-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012; 22: 291–303.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ . The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 2013; 138: 105–115.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Tang B, Wu W, Wei X, Li Y, Ren G, Fan W . Activation of glioma cells generates immune tolerant NKT cells. J Biol Chem 2014; 289: 34595–34600.

    PubMed Central  PubMed  Google Scholar 

  85. Ueda R, Kohanbash G, Sasaki K, Fujita M, Zhu X, Kastenhuber ER et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci USA 2009; 106: 10746–10751.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu S, Li L, Yeh S, Cui Y, Li X, Chang HC et al. Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11—>miRNA-541—>androgen receptor (AR)—>MMP9 signaling. Mol Oncol 2015 9: 44–57.

  87. Senst C, Nazari-Shafti T, Kruger S, Honer Zu Bentrup K, Dupin CL, Chaffin AE et al. Prospective dual role of mesenchymal stem cells in breast tumor microenvironment. Breast Cancer Res Treat 2013; 137: 69–79.

    CAS  PubMed  Google Scholar 

  88. Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 2013; 15: 284–294.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC . The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 1997; 185: 111–120.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 2007; 25: 1737–1745.

    CAS  PubMed  Google Scholar 

  91. Xu Q, Wang L, Li H, Han Q, Li J, Qu X et al. Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-beta. Int J Oncol 2012; 41: 959–968.

    CAS  PubMed  Google Scholar 

  92. Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology 2013; 57: 2274–2286.

    CAS  PubMed  Google Scholar 

  93. Kosaka N, Yoshioka Y, Hagiwara K, Tominaga N, Katsuda T, Ochiya T . Trash or treasure: extracellular microRNAs and cell-to-cell communication. Front Genet 2013; 4: 173.

    PubMed Central  PubMed  Google Scholar 

  94. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T . Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 2013; 288: 10849–10859.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014; 25: 501–515.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 2012; 31: 3513–3523.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biol 2008; 10: 1470–1476.

    CAS  PubMed  Google Scholar 

  98. Bronisz A, Wang Y, Nowicki MO, Peruzzi P, Ansari KI, Ogawa D et al. Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res 2014; 74: 738–750.

    CAS  PubMed  Google Scholar 

  99. Zhai H, Acharya S, Gravanis I, Mehmood S, Seidman RJ, Shroyer KR et al. Annexin A2 promotes glioma cell invasion and tumor progression. J Neurosci 2011; 31: 14346–14360.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 2011; 71: 5346–5356.

    CAS  PubMed  Google Scholar 

  101. Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH . Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene 2013; 32: 2747–2755.

    CAS  PubMed  Google Scholar 

  102. Morello M, Minciacchi VR, de Candia P, Yang J, Posadas E, Kim H et al. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 2013; 12: 3526–3536.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Rappa G, Mercapide J, Anzanello F, Pope RM, Lorico A . Biochemical and biological characterization of exosomes containing prominin-1/CD133. Mol Cancer 2013; 12: 62.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 2012; 109: E2110–E2116.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Yang M, Chen J, Su F, Yu B, Lin L, Liu Y et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 2011; 10: 117.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013; 123: 1542–1555.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Wang M, Zhao C, Shi H, Zhang B, Zhang L, Zhang X et al. Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer 2014; 110: 1199–1210.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 2013; 8: e84256.

    PubMed Central  PubMed  Google Scholar 

  109. Aucher A, Rudnicka D, Davis DM . MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol 2013; 191: 6250–6260.

    CAS  PubMed  Google Scholar 

  110. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O . Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 2009; 11: 1143–1149.

    CAS  PubMed  Google Scholar 

  111. Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA . Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 2012; 13: 357.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Nolte-'t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, t Hoen PA . Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 2012; 40: 9272–9285.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Simons M, Raposo G . Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21: 575–581.

    CAS  PubMed  Google Scholar 

  114. Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R et al. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 2014; 8: 1432–1446.

    CAS  PubMed  Google Scholar 

  115. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659.

    CAS  PubMed  Google Scholar 

  116. Taylor DD, Gercel-Taylor C . MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110: 13–21.

    CAS  PubMed  Google Scholar 

  117. Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 2011; 30: 4231–4242.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FK was supported by grants T32 CA070085 and F32 CA180677. MEP and EL were supported by an OCRF program project development grant FP049318/PPD/UC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M E Peter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlhapp, F., Mitra, A., Lengyel, E. et al. MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene 34, 5857–5868 (2015). https://doi.org/10.1038/onc.2015.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.89

This article is cited by

Search

Quick links