Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RSUME inhibits VHL and regulates its tumor suppressor function

Abstract

Somatic mutations or loss of von Hippel–Lindau (pVHL) happen in the majority of VHL disease tumors, which present a constitutively active Hypoxia Inducible Factor (HIF), essential for tumor growth. Recently described mechanisms for pVHL modulation shed light on the open question of the HIF/pVHL pathway regulation. The aim of the present study was to determine the molecular mechanism by which RSUME stabilizes HIFs, by studying RSUME effect on pVHL function and to determine the role of RSUME on pVHL-related tumor progression. We determined that RSUME sumoylates and physically interacts with pVHL and negatively regulates the assembly of the complex between pVHL, Elongins and Cullins (ECV), inhibiting HIF-1 and 2α ubiquitination and degradation. We found that RSUME is expressed in human VHL tumors (renal clear-cell carcinoma (RCC), pheochromocytoma and hemangioblastoma) and by overexpressing or silencing RSUME in a pVHL-HIF-oxygen-dependent degradation stability reporter assay, we determined that RSUME is necessary for the loss of function of type 2 pVHL mutants. The functional RSUME/pVHL interaction in VHL-related tumor progression was further confirmed using a xenograft assay in nude mice. RCC clones, in which RSUME was knocked down and express either pVHL wt or type 2 mutation, have an impaired tumor growth, as well as HIF-2α, vascular endothelial growth factor A and tumor vascularization diminution. This work shows a novel mechanism for VHL tumor progression and presents a new mechanism and factor for targeting tumor-related pathologies with pVHL/HIF altered function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK et al. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 2007; 131: 309–323.

    Article  CAS  PubMed  Google Scholar 

  2. Geiss-Friedlander R, Melchior F . Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007; 8: 947–956.

    Article  CAS  PubMed  Google Scholar 

  3. Hay RT . SUMO: a history of modification. Mol Cell 2005; 18: 1–12.

    Article  CAS  PubMed  Google Scholar 

  4. Druker J, Liberman AC, Antunica-Noguerol M, Gerez J, Paez-Pereda M, Rein T et al. RSUME enhances glucocorticoid receptor SUMOylation and transcriptional activity. Mol Cell Biol 2013; 33: 2116–2127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerez J, Fuertes M, Tedesco L, Silberstein S, Sevlever G, Paez-Pereda M et al. In silico structural and functional characterization of the RSUME splice variants. PLoS One 2013; 8: e57795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang CC, Tu SH, Lien HH, Jeng JY, Huang CS, Huang CJ et al. Concurrent gene signatures for han chinese breast cancers. PLoS ONE 2013; 8: e76421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schneider BP, Li L, Miller K, Flockhart D, Radovich M, Hancock BA et al. Genetic associations with taxane-induced neuropathy by a genome-wide association study (GWAS) in E5103. J Clin Oncol 2011; 29: Supplementary Abstract 1000.

    Article  Google Scholar 

  8. Bergmann TK, Vach W, Feddersen S, Eckhoff L, Green H, Herrstedt J et al. GWAS-based association between RWDD3 and TECTA variants and paclitaxel induced neuropathy could not be confirmed in Scandinavian ovarian cancer patients. Acta Oncol 2013; 52: 871–874.

    Article  CAS  PubMed  Google Scholar 

  9. Rojewska E, Korostynski M, Przewlocki R, Przewlocka B, Mika J . Expression profiling of genes modulated by minocycline in a rat model of neuropathic pain. Mol Pain 2014; 10: 47.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Willi-Monnerat S, Migliavacca E, Surdez D, Delorenzi M, Luthi-Carter R, Terskikh AV . Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision. Mol Cell Neurosci 2008; 37: 845–856.

    Article  CAS  PubMed  Google Scholar 

  11. Semenza GL . Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999; 15: 551–578.

    Article  CAS  PubMed  Google Scholar 

  12. Brahimi-Horn MC, Pouyssegur J . HIF at a glance. J Cell Sci 2009; 122: 1055–1057.

    Article  CAS  PubMed  Google Scholar 

  13. Kaelin WG Jr., Ratcliffe PJ . Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008; 30: 393–402.

    Article  CAS  PubMed  Google Scholar 

  14. Keith B, Johnson RS, Simon MC . HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 2012; 12: 9–22.

    Article  CAS  Google Scholar 

  15. Pugh CW, O'Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ . Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 1997; 272: 11205–11214.

    Article  CAS  PubMed  Google Scholar 

  16. Berra E, Pouyssegur J . The silencing approach of the hypoxia-signaling pathway. Methods Enzymol 2007; 435: 107–121.

    Article  CAS  PubMed  Google Scholar 

  17. Greer SN, Metcalf JL, Wang Y, Ohh M . The updated biology of hypoxia-inducible factor. EMBO J 2012; 31: 2448–2460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaelin WG Jr . Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2002; 2: 673–682.

    Article  CAS  PubMed  Google Scholar 

  19. Yu F, White SB, Zhao Q, Lee FS . HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 2001; 98: 9630–9635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwartz AL, Ciechanover A . Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 2009; 49: 73–96.

    Article  CAS  PubMed  Google Scholar 

  21. Semenza GL . Oxygen sensing, homeostasis, and disease. N Engl J Med 2011; 365: 537–547.

    CAS  PubMed  Google Scholar 

  22. Nunez-O'Mara A, Berra E . Deciphering the emerging role of SUMO conjugation in the hypoxia-signaling cascade. Biol Chem 2013; 394: 459–469.

    CAS  PubMed  Google Scholar 

  23. Kim WY, Kaelin WG . Role of VHL gene mutation in human cancer. J Clin Oncol 2004; 22: 4991–5004.

    Article  CAS  PubMed  Google Scholar 

  24. Maher ER, Kaelin WG Jr . von Hippel-Lindau disease. Medicine (Baltimore) 1997; 76: 381–391.

    Article  CAS  Google Scholar 

  25. Keefe SM, Nathanson KL, Rathmell WK . The molecular biology of renal cell carcinoma. Semin Oncol 2013; 40: 421–428.

    Article  CAS  PubMed  Google Scholar 

  26. Jonasch E, Futreal PA, Davis IJ, Bailey ST, Kim WY, Brugarolas J et al. State of the science: an update on renal cell carcinoma. Mol Cancer Res 2012; 10: 859–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2000; 2: 423–427.

    Article  CAS  PubMed  Google Scholar 

  28. Kaelin WG Jr . The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 2008; 8: 865–873.

    Article  CAS  PubMed  Google Scholar 

  29. Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, Choi SJ et al. Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 2004; 324: 394–400.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng J, Kang X, Zhang S, Yeh ET . SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 2007; 131: 584–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim WY, Safran M, Buckley MR, Ebert BL, Glickman J, Bosenberg M et al. Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. EMBO J 2006; 25: 4650–4662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai Q, Verma SC, Kumar P, Ma M, Robertson ES . Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification. PLoS ONE 2010; 5: e9720.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chien W, Lee KL, Ding LW, Wuensche P, Kato H, Doan NB et al. PIAS4 is an activator of hypoxia signalling via VHL suppression during growth of pancreatic cancer cells. Br J Cancer 2013; 109: 1795–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rathmell WK, Hickey MM, Bezman NA, Chmielecki CA, Carraway NC, Simon MC . In vitro and in vivo models analyzing von Hippel-Lindau disease-specific mutations. Cancer Res 2004; 64: 8595–8603.

    Article  CAS  PubMed  Google Scholar 

  35. Rechsteiner MP, von Teichman A, Nowicka A, Sulser T, Schraml P, Moch H . VHL gene mutations and their effects on hypoxia inducible factor HIFalpha: identification of potential driver and passenger mutations. Cancer Res 2011; 71: 5500–5511.

    Article  CAS  PubMed  Google Scholar 

  36. Hacker KE, Lee CM, Rathmell WK . VHL type 2B mutations retain VBC complex form and function. PLoS ONE 2008; 3: e3801.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Skuli N, Majmundar AJ, Krock BL, Mesquita RC, Mathew LK, Quinn ZL et al. Endothelial HIF-2alpha regulates murine pathological angiogenesis and revascularization processes. J Clin Invest 2012; 122: 1427–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang X, Li J, Zou Y, Yi J, Zhang H, Cao M et al. PIASy stimulates HIF1alpha SUMOylation and negatively regulates HIF1alpha activity in response to hypoxia. Oncogene 2010; 29: 5568–5578.

    Article  CAS  PubMed  Google Scholar 

  39. van Hagen M, Overmeer RM, Abolvardi SS, Vertegaal AC . RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2alpha. Nucleic Acids Res 2010; 38: 1922–1931.

    Article  CAS  PubMed  Google Scholar 

  40. Cimarosti H, Lindberg C, Bomholt SF, Ronn LC, Henley JM . Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology 2008; 54: 280–289.

    Article  CAS  PubMed  Google Scholar 

  41. Yang W, Sheng H, Warner DS, Paschen W . Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. J Cereb Blood Flow Metab 2008; 28: 892–896.

    Article  PubMed  Google Scholar 

  42. Huang C, Han Y, Wang Y, Sun X, Yan S, Yeh ET et al. SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J 2009; 28: 2748–2762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shan B, Gerez J, Haedo M, Fuertes M, Theodoropoulou M, Buchfelder M et al. RSUME is implicated in HIF-1-induced VEGF-A production in pituitary tumour cells. Endocr Relat Cancer 2012; 19: 13–27.

    Article  CAS  PubMed  Google Scholar 

  44. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  45. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499: 43–49.

    Article  Google Scholar 

  47. Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin WG Jr . von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet 2001; 10: 1019–1027.

    Article  CAS  PubMed  Google Scholar 

  48. Knauth K, Bex C, Jemth P, Buchberger A . Renal cell carcinoma risk in type 2 von Hippel-Lindau disease correlates with defects in pVHL stability and HIF-1alpha interactions. Oncogene 2006; 25: 370–377.

    Article  CAS  PubMed  Google Scholar 

  49. Semenza GL . HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 2013; 123: 3664–3671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Knauth K, Cartwright E, Freund S, Bycroft M, Buchberger A . VHL mutations linked to type 2C von Hippel-Lindau disease cause extensive structural perturbations in pVHL. J Biol Chem 2009; 284: 10514–10522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rathmell WK, Godley PA . Recent updates in renal cell carcinoma. Curr Opin Oncol 2010; 22: 250–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cowey CL, Rathmell WK . VHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacy. Curr Oncol Rep 2009; 11: 94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brooks SA, Brannon AR, Parker JS, Fisher JC, Sen O, Kattan MW et al. ClearCode34: A prognostic risk predictor for localized clear cell renal cell carcinoma. Eur Urol 2014; 66: 77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gnarra JR, Zhou S, Merrill MJ, Wagner JR, Krumm A, Papavassiliou E et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Natl Acad Sci USA 1996; 93: 10589–10594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iliopoulos O, Kibel A, Gray S, Kaelin WG Jr . Tumour suppression by the human von Hippel-Lindau gene product. Nat Med 1995; 1: 822–826.

    Article  CAS  PubMed  Google Scholar 

  56. Zimmer M, Doucette D, Siddiqui N, Iliopoulos O . Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. Mol Cancer Res 2004; 2: 89–95.

    CAS  PubMed  Google Scholar 

  57. Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD . The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 2002; 1: 247–255.

    Article  CAS  PubMed  Google Scholar 

  58. Richard DE, Berra E, Pouyssegur J . Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 2000; 275: 26765–26771.

    CAS  PubMed  Google Scholar 

  59. Tanos T, Marinissen MJ, Leskow FC, Hochbaum D, Martinetto H, Gutkind JS et al. Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light. J Biol Chem 2005; 280: 18842–18852.

    Article  CAS  PubMed  Google Scholar 

  60. Groulx I, Lee S . Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol 2002; 22: 5319–5336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Safran M, Kim WY, O'Connell F, Flippin L, Gunzler V, Horner JW et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci USA 2006; 103: 105–110.

    Article  CAS  PubMed  Google Scholar 

  62. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr . Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002; 1: 237–246.

    Article  CAS  PubMed  Google Scholar 

  63. Post DE, Van Meir EG . Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Ther 2001; 8: 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  64. Schoenfeld AR, Davidowitz EJ, Burk RD . Elongin BC complex prevents degradation of von Hippel-Lindau tumor suppressor gene products. Proc Natl Acad Sci USA 2000; 97: 8507–8512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Desterro JM, Rodriguez MS, Hay RT . SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 1998; 2: 233–239.

    Article  CAS  PubMed  Google Scholar 

  66. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 2001; 276: 35368–35374.

    Article  CAS  PubMed  Google Scholar 

  67. Rodriguez MS, Dargemont C, Hay RT . SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 2001; 276: 12654–12659.

    Article  CAS  PubMed  Google Scholar 

  68. Juengel E, Engler J, Natsheh I, Jones J, Mickuckyte A, Hudak L et al. Combining the receptor tyrosine kinase inhibitor AEE788 and the mammalian target of rapamycin (mTOR) inhibitor RAD001 strongly inhibits adhesion and growth of renal cell carcinoma cells. BMC Cancer 2009; 9: 161.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lolkema MP, Gervais ML, Snijckers CM, Hill RP, Giles RH, Voest EE et al. Tumor suppression by the von Hippel-Lindau protein requires phosphorylation of the acidic domain. J Biol Chem 2005; 280: 22205–22211.

    Article  CAS  PubMed  Google Scholar 

  70. Castro CP, Giacomini D, Nagashima AC, Onofri C, Graciarena M, Kobayashi K et al. Reduced expression of the cytokine transducer gp130 inhibits hormone secretion, cell growth, and tumor development of pituitary lactosomatotrophic GH3 cells. Endocrinology 2003; 144: 693–700.

    Article  CAS  PubMed  Google Scholar 

  71. Paez-Pereda M, Giacomini D, Refojo D, Nagashima AC, Hopfner U, Grubler Y et al. Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk. Proc Natl Acad Sci USA 2003; 100: 1034–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang J, Zhao Q, Mooney SM, Lee FS . Sequence determinants in hypoxia-inducible factor-1alpha for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 2002; 277: 39792–39800.

    Article  CAS  PubMed  Google Scholar 

  73. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 2000; 275: 25733–25741.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sergio Senin, María Antunica Noguerol, Jimena Druker and Mariana Haedo for technical help. We also thank the Argentinian Instituto Nacional del Cáncer (INC) and Bunge&Born Foundation for financial support to Lucas Tedesco and Juan Jose Bonfiglio, respectively. This work was supported by grants from the Max Planck Society, Germany; the University of Buenos Aires; CONICET; the Agencia Nacional de Promoción Científica y Tecnológica, Argentina and FOCEM-Mercosur (COF 03/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Arzt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerez, J., Tedesco, L., Bonfiglio, J. et al. RSUME inhibits VHL and regulates its tumor suppressor function. Oncogene 34, 4855–4866 (2015). https://doi.org/10.1038/onc.2014.407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.407

This article is cited by

Search

Quick links