Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

ATR inhibition preferentially targets homologous recombination-deficient tumor cells

Abstract

Homologous recombination (HR) is required for faithful repair of double-strand DNA breaks. Defects in HR repair cause severe genomic instability and challenge cellular viability. Paradoxically, various cancers are HR defective and have apparently acquired characteristics to survive genomic instability. We aimed to identify these characteristics to uncover therapeutic targets for HR-deficient cancers. Cytogenetic analysis of 1143 ovarian cancers showed that the degree of genomic instability was correlated to amplification of replication checkpoint genes ataxia telangiectasia and Rad3-related kinase (ATR) and CHEK1. To test whether genomic instability leads to increased reliance on replication checkpoint signaling, we inactivated Rad51 to model HR-related genomic instability. Rad51 inactivation caused defective HR repair and induced aberrant replication dynamics. Notably, inhibition of Rad51 led to increased ATR/checkpoint kinase-1 (Chk1)-mediated replication stress signaling. Importantly, inhibition of ATR or Chk1 preferentially killed HR-deficient cancer cells. Combined, our data show that defective HR caused by Rad51 inhibition results in differential sensitivity for ATR and Chk1 inhibitors, implicating replication checkpoint kinases as potential drug targets for HR-defective cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Krejci L, Altmannova V, Spirek M, Zhao X . Homologous recombination and its regulation. Nucleic Acids Res 2012; 40: 5795–5818.

    Article  CAS  Google Scholar 

  2. Johnson RD, Jasin M . Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 2000; 19: 3398–3407.

    Article  CAS  Google Scholar 

  3. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T . Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 2010; 37: 492–502.

    Article  CAS  Google Scholar 

  4. Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V . Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 2010; 17: 1305–1311.

    Article  CAS  Google Scholar 

  5. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M . Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 2011; 145: 529–542.

    Article  CAS  Google Scholar 

  6. Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A . Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 1997; 11: 1226–1241.

    Article  CAS  Google Scholar 

  7. Lim DS, Hasty P . A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 1996; 16: 7133–7143.

    Article  CAS  Google Scholar 

  8. Suzuki A, la Pompa de JL, Hakem R, Elia A, Yoshida R, Mo R et al. Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev 1997; 11: 1242–1252.

    Article  CAS  Google Scholar 

  9. Hakem R, la Pompa de JL, Sirard C, Mo R, Woo M, Hakem A et al. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 1996; 85: 1009–1023.

    Article  CAS  Google Scholar 

  10. Moynahan ME, Jasin M . Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11: 196–207.

    Article  CAS  Google Scholar 

  11. Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science (New York, NY) 1994; 265: 2088–2090.

    Article  CAS  Google Scholar 

  12. Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science (New York, NY) 1994; 266: 120–122.

    Article  CAS  Google Scholar 

  13. Lee H, Trainer AH, Friedman LS, Thistlethwaite FC, Evans MJ, Ponder BA et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol Cell 1999; 4: 1–10.

    Article  CAS  Google Scholar 

  14. Greenblatt MS, Chappuis PO, Bond JP, Hamel N, Foulkes WD . TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res 2001; 61: 4092–4097.

    CAS  Google Scholar 

  15. Frappart P-O, Lee Y, Russell HR, Chalhoub N, Wang Y-D, Orii KE et al. Recurrent genomic alterations characterize medulloblastoma arising from DNA double-strand break repair deficiency. Proc Nati Acad Sci USA 2009; 106: 1880–1885.

    Article  CAS  Google Scholar 

  16. Fang Y, Tsao C-C, Goodman BK, Furumai R, Tirado CA, Abraham RT et al. ATR functions as a gene dosage-dependent tumor suppressor on a mismatch repair-deficient background. EMBO J 2004; 23: 3164–3174.

    Article  CAS  Google Scholar 

  17. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer discovery. Am Assoc Cancer Res 2012; 2: 401–404.

    Google Scholar 

  18. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1–pl1.

    Article  Google Scholar 

  19. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C . Emerging landscape of oncogenic signatures across human cancers. Nat Genet 2013; 45: 1127–1133.

    Article  CAS  Google Scholar 

  20. López-Contreras AJ, Gutierrez-Martinez P, Specks J, Rodrigo-Perez S, Fernandez-Capetillo O . An extra allele of Chk1 limits oncogene-induced replicative stress and promotes transformation. J Exp Med 2012; 209: 455–461.

    Article  Google Scholar 

  21. Cleton-Jansen AM, Collins N, Lakhani SR, Weissenbach J, Devilee P, Cornelisse CJ et al. Loss of heterozygosity in sporadic breast tumours at the BRCA2 locus on chromosome 13q12-q13. Br J Cancer 1995; 72: 1241–1244.

    Article  CAS  Google Scholar 

  22. Smith L, Liu SJ, Goodrich L, Jacobson D, Degnin C, Bentley N et al. Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest. Nat Genet 1998; 19: 39–46.

    Article  CAS  Google Scholar 

  23. Sung P, Krejci L, Van Komen S, Sehorn MG . Rad51 recombinase and recombination mediators. J Biol Chem 2003; 278: 42729–42732.

    Article  CAS  Google Scholar 

  24. Baumann P, Benson FE, West SC . Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 1996; 87: 757–766.

    Article  CAS  Google Scholar 

  25. Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S . Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair 2006; 5: 1021–1029.

    Article  CAS  Google Scholar 

  26. Huang F, Motlekar NA, Burgwin CM, Napper AD, Diamond SL, Mazin AV . Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chem Biol 2011; 6: 628–635.

    Article  CAS  Google Scholar 

  27. Pierce AJ, Johnson RD, Thompson LH, Jasin M . XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 1999; 13: 2633–2638.

    Article  CAS  Google Scholar 

  28. Cimprich KA, Cortez D . ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 2008; 9: 616–627.

    Article  CAS  Google Scholar 

  29. Anantha RW, Vassin VM, Borowiec JA . Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair. J Biol Chem 2007; 282: 35910–35923.

    Article  CAS  Google Scholar 

  30. Liu S, Shiotani B, Lahiri M, Maréchal A, Tse A, Leung CCY et al. ATR autophosphorylation as a molecular switch for checkpoint activation. Mol Cell 2011; 43: 192–202.

    Article  CAS  Google Scholar 

  31. Toledo LI, Altmeyer M, Rask M-B, Lukas C, Larsen DH, Povlsen LK et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 2013; 155: 1088–1103.

    Article  CAS  Google Scholar 

  32. Reaper PM, Griffiths MR, Long JM, Charrier J-D, Maccormick S, Charlton PA et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 2011; 7: 428–430.

    Article  CAS  Google Scholar 

  33. Oza V, Ashwell S, Almeida L, Brassil P, Breed J, Deng C et al. Discovery of checkpoint kinase inhibitor (S)-5-(3-fluorophenyl)-N-(piperidin-3-yl)-3-ureidothiophene-2-carboxamide (AZD7762) by structure-based design and optimization of thiophenecarboxamide ureas. J Med Chem 2012; 55: 5130–5142.

    Article  CAS  Google Scholar 

  34. Murga M, Campaner S, López-Contreras AJ, Toledo LI, Soria R, Montaña MF et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 2011; 18: 1331–1335.

    Article  CAS  Google Scholar 

  35. Herold S, Herkert B, Eilers M . Facilitating replication under stress: an oncogenic function of MYC? Nat Rev Cancer 2009; 9: 441–444.

    Article  CAS  Google Scholar 

  36. Karst AM, Jones PM, Vena N, Ligon AH, Liu JF, Hirsch MS et al. Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers. Cancer Res 2014; 74: 1141–1152.

    Article  CAS  Google Scholar 

  37. Schlacher K, Wu H, Jasin M . A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 2012; 22: 106–116.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by an NWO VIDI grant to MATMvV (917-3334), a Bas Mulder grant from the Alpe d'HuZes/Dutch Cancer Society (RUG2013-5960) to RSNF and funding from the Van der Meer-Boerema Foundation to MK. We thank Dr Maria Jasin for generously supplying materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A T M van Vugt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krajewska, M., Fehrmann, R., Schoonen, P. et al. ATR inhibition preferentially targets homologous recombination-deficient tumor cells. Oncogene 34, 3474–3481 (2015). https://doi.org/10.1038/onc.2014.276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.276

This article is cited by

Search

Quick links