Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFβ in claudin-low breast tumor cells

Abstract

Patient data suggest that colony-stimulating factor-1 (CSF1) and its receptor (CSF1R) have critical roles during breast cancer progression. We have previously shown that in human breast tumors expressing both CSF1 and CSF1R, invasion in vivo is dependent both on a paracrine interaction with tumor-associated macrophages and an autocrine regulation of CSF1R in the tumor cells themselves. Although the role of the paracrine interaction between tumor cells and macrophages has been extensively studied, very little is known about the mechanism by which the autocrine CSF1R signaling contributes to tumor progression. We show here that breast cancer patients of the claudin-low subtype have significantly increased expression of CSF1R. Using a panel of breast cancer cell lines, we confirm that CSF1R expression is elevated and regulated by TGFβ specifically in claudin-low cell lines. Abrogation of autocrine CSF1R signaling in MDA-MB-231 xenografts (a claudin-low cell line) leads to increased tumor size by enhanced proliferation, but significantly reduced invasion, dissemination and metastasis. Indeed, we show that proliferation and invasion are oppositely regulated by CSF1R downstream of TGFβ only in claudin-low cell lines. Intravital multiphoton imaging revealed that inhibition of CSF1R in the tumor cells leads to decreased in vivo motility and a more cohesive morphology. We show that, both in vitro and in vivo, CSF1R inhibition results in a reversal of claudin-low marker expression by significant upregulation of luminal keratins and tight-junction proteins such as claudins. Finally, we show that artificial overexpression of claudins in MDA-MB-231 cells is sufficient to tip the cells from an invasive state to a proliferative state. Our results suggest that autocrine CSF1R signaling is essential in maintaining low claudin expression and that it mediates a switch between the proliferative and the invasive state in claudin-low tumor cells downstream of TGFβ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100: 8418–8423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 2003; 100: 10393–10398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 2006; 7: 96.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12: R68.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sotiriou C, Pusztai L . Gene-expression signatures in breast cancer. N Engl J Med 2009; 360: 790–800.

    Article  CAS  PubMed  Google Scholar 

  9. Weigelt B, Pusztai L, Ashworth A, Reis-Filho JS . Challenges translating breast cancer gene signatures into the clinic. Nat Rev Clin Oncol 2012; 9: 58–64.

    Article  CAS  Google Scholar 

  10. Kacinski BM, Carter D, Mittal K, Kohorn EI, Bloodgood RS, Donahue J et al. High level expression of fms proto-oncogene mRNA is observed in clinically aggressive human endometrial adenocarcinomas. Int J Radiat Oncol Biol Phys 1988; 15: 823–829.

    Article  CAS  PubMed  Google Scholar 

  11. Kacinski BM, Carter D, Mittal K, Yee LD, Scata KA, Donofrio L et al. Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol 1990; 137: 135–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kacinski BM, Scata KA, Carter D, Yee LD, Sapi E, King BL et al. FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene 1991; 6: 941–952.

    CAS  PubMed  Google Scholar 

  13. Scholl SM, Lidereau R, de la Rochefordiere A, Le-Nir CC, Mosseri V, Nogues C et al. Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast cancer patients. A pilot study. Breast Cancer Res Treat 1996; 39: 275–283.

    Article  CAS  PubMed  Google Scholar 

  14. Kacinski BM, Stanley ER, Carter D, Chambers JT, Chambers SK, Kohorn EI et al. Circulating levels of CSF-1 (M-CSF) a lymphohematopoietic cytokine may be a useful marker of disease status in patients with malignant ovarian neoplasms. Int J Radiat Oncol Biol Phys 1989; 17: 159–164.

    Article  CAS  PubMed  Google Scholar 

  15. Scholl SM, Bascou CH, Mosseri V, Olivares R, Magdelenat H, Dorval T et al. Circulating levels of colony-stimulating factor 1 as a prognostic indicator in 82 patients with epithelial ovarian cancer. Br J Cancer 1994; 69: 342–346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004; 64: 7022–7029.

    Article  CAS  PubMed  Google Scholar 

  17. Roussos ET, Balsamo M, Alford SK, Wyckoff JB, Gligorijevic B, Wang Y et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci 2011; 124: 2120–2131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Patsialou A, Bravo-Cordero JJ, Wang Y, Entenberg D, Liu H, Clarke M et al. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. Intravital 2013; 2: e25294.

    Article  PubMed  Google Scholar 

  19. Lin EY, Nguyen AV, Russell RG, Pollard JW . Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001; 193: 727–740.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R et al. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 2004; 64: 5378–5384.

    Article  CAS  PubMed  Google Scholar 

  21. Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S . Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res 2006; 66: 4349–4356.

    Article  CAS  PubMed  Google Scholar 

  22. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 2011; 1: 54–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kacinski BM . CSF-1 and its receptor in breast carcinomas and neoplasms of the female reproductive tract. Mol Reprod Dev 1997; 46: 71–74.

    Article  CAS  PubMed  Google Scholar 

  24. Filderman AE, Bruckner A, Kacinski BM, Deng N, Remold HG . Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptor-positive carcinoma cell lines. Cancer Res 1992; 52: 3661–3666.

    CAS  PubMed  Google Scholar 

  25. Sapi E, Flick MB, Rodov S, Gilmore-Hebert M, Kelley M, Rockwell S et al. Independent regulation of invasion and anchorage-independent growth by different autophosphorylation sites of the macrophage colony-stimulating factor 1 receptor. Cancer Res 1996; 56: 5704–5712.

    CAS  PubMed  Google Scholar 

  26. Wrobel CN, Debnath J, Lin E, Beausoleil S, Roussel MF, Brugge JS . Autocrine CSF-1R activation promotes Src-dependent disruption of mammary epithelial architecture. J Cell Biol 2004; 165: 263–273.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS . Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res 2009; 69: 9498–9506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 2010; 107: 15449–15454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arteaga CL, Tandon AK, Von Hoff DD, Osborne CK . Transforming growth factor beta: potential autocrine growth inhibitor of estrogen receptor-negative human breast cancer cells. Cancer Res 1988; 48: 3898–3904.

    CAS  PubMed  Google Scholar 

  30. Zugmaier G, Ennis BW, Deschauer B, Katz D, Knabbe C, Wilding G et al. Transforming growth factors type beta 1 and beta 2 are equipotent growth inhibitors of human breast cancer cell lines. J Cell Physiol 1989; 141: 353–361.

    Article  CAS  PubMed  Google Scholar 

  31. Morandi A, Barbetti V, Riverso M, Dello Sbarba P, Rovida E . The colony-stimulating factor-1 (CSF-1) receptor sustains ERK1/2 activation and proliferation in breast cancer cell lines. PLoS One 2011; 6: e27450.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Qian BZ, Pollard JW . Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141: 39–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Farina AR, Coppa A, Tiberio A, Tacconelli A, Turco A, Colletta G et al. Transforming growth factor-beta1 enhances the invasiveness of human MDA-MB-231 breast cancer cells by up-regulating urokinase activity. Int J Cancer 1998; 75: 721–730.

    Article  CAS  PubMed  Google Scholar 

  34. Cross M, Nguyen T, Bogdanoska V, Reynolds E, Hamilton JA . A proteomics strategy for the enrichment of receptor-associated complexes. Proteomics 2005; 5: 4754–4763.

    Article  CAS  PubMed  Google Scholar 

  35. Ikenouchi J, Matsuda M, Furuse M, Tsukita S . Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 2003; 116: 1959–1967.

    Article  CAS  PubMed  Google Scholar 

  36. Martinez-Estrada OM, Culleres A, Soriano FX, Peinado H, Bolos V, Martinez FO et al. The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J 2006; 394: 449–457.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26: 6979–6988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Myal Y, Leygue E, Blanchard AA . Claudin 1 in breast tumorigenesis: revelation of a possible novel ‘claudin high’ subset of breast cancers. J Biomed Biotechnol 2010; 2010: 956897.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Lanigan F, McKiernan E, Brennan DJ, Hegarty S, Millikan RC, McBryan J et al. Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer. Int J Cancer 2009; 124: 2088–2097.

    Article  CAS  PubMed  Google Scholar 

  40. Resnick MB, Gavilanez M, Newton E, Konkin T, Bhattacharya B, Britt DE et al. Claudin expression in gastric adenocarcinomas: a tissue microarray study with prognostic correlation. Hum Pathol 2005; 36: 886–892.

    Article  CAS  PubMed  Google Scholar 

  41. Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 2005; 115: 1765–1776.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Agarwal R, Mori Y, Cheng Y, Jin Z, Olaru AV, Hamilton JP et al. Silencing of claudin-11 is associated with increased invasiveness of gastric cancer cells. PLoS One 2009; 4: e8002.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Condeelis J, Pollard JW . Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006; 124: 263–266.

    Article  CAS  PubMed  Google Scholar 

  44. Pollard JW . Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 2008; 84: 623–630.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Ruffell B, Affara NI, Coussens LM . Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33: 119–126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Sudo T, Nishikawa S, Ogawa M, Kataoka H, Ohno N, Izawa A et al. Functional hierarchy of c-kit and c-fms in intramarrow production of CFU-M. Oncogene 1995; 11: 2469–2476.

    CAS  PubMed  Google Scholar 

  47. Gil-Henn H, Patsialou A, Wang Y, Warren MS, Condeelis JS, Koleske AJ . Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo. Oncogene 2013; 32: 2622–2630.

    Article  CAS  PubMed  Google Scholar 

  48. Patsialou A, Wang Y, Lin J, Whitney K, Goswami S, Kenny PA et al. Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients. Breast Cancer Res 2012; 14: R139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Wyckoff JB, Segall JE, Condeelis JS . The collection of the motile population of cells from a living tumor. Cancer Res 2000; 60: 5401–5404.

    CAS  PubMed  Google Scholar 

  50. Wyckoff JB, Jones JG, Condeelis JS, Segall JE . A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 2000; 60: 2504–2511.

    CAS  PubMed  Google Scholar 

  51. Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J . N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci 2012; 125: 724–734.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kedrin D, Gligorijevic B, Wyckoff J, Verkhusha VV, Condeelis J, Segall JE et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 2008; 5: 1019–1021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Entenberg D, Wyckoff J, Gligorijevic B, Roussos ET, Verkhusha VV, Pollard JW et al. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nat Protoc 2011; 6: 1500–1520.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Paraic Kenny, Richard Stanley, Jeffrey Segall and members of the Condeelis lab for helpful discussions. The AFS98, total and phospho-Y559 CSF1R antibodies were a generous gift from Dr Richard Stanley. For technical help at Albert Einstein College of Medicine, we thank the Histotechnology and Comparative Pathology Facility, the shRNA Core Facility, the FACS Facility (supported by NCI P30 CA 013330) and the Genomics Facility. This work was supported by NCI grants 5RO1CA164468 (AP, YW, XC, DE and JSC) and RO1CA170507 (JP, MO and JSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Patsialou or J S Condeelis.

Ethics declarations

Competing interests

JSC holds equity and is a consultant for MetaStat and for Deciphera Pharmaceuticals. DE is a consultant for MetaStat. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patsialou, A., Wang, Y., Pignatelli, J. et al. Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFβ in claudin-low breast tumor cells. Oncogene 34, 2721–2731 (2015). https://doi.org/10.1038/onc.2014.226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.226

This article is cited by

Search

Quick links