Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An evolutionary shift in the regulation of the Hippo pathway between mice and flies

Abstract

The Hippo pathway plays a key role in controlling organ growth in many animal species and its deregulation is associated with different types of cancer. Understanding the regulation of the Hippo pathway and discovering upstream regulators is thus a major quest. Interestingly, while the core of the Hippo pathway contains a highly conserved kinase cascade, different components have been identified as upstream regulators in Drosophila and vertebrates. However, whether the regulation of the Hippo pathway is indeed different between Drosophila and vertebrates or whether these differences are due to our limited analysis of these components in different organisms is not known. Here we show that the mouse Fat4 cadherin, the ortholog of the Hippo pathway regulator Fat in Drosophila, does not apparently regulate the Hippo pathway in the murine liver. In fact, we uncovered an evolutionary shift in many of the known upstream regulators at the base of the arthropod lineage. In this evolutionary transition, Fat and the adaptor protein Expanded gained novel domains that connected them to the Hippo pathway, whereas the cell-adhesion receptor Echinoid evolved as a new protein. Subsequently, the junctional adaptor protein Angiomotin (Amot) was lost and the downstream effector Yap lost its PDZ-binding motif that interacts with cell junction proteins. We conclude that fundamental differences exist in the upstream regulatory mechanisms of Hippo signaling between Drosophila and vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pan D . The hippo signaling pathway in development and cancer. Dev Cell 2010; 19: 491–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Halder G, Johnson RL . Hippo signaling: growth control and beyond. Development 2011; 138: 9–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao B, Li L, Lei Q, Guan KL . The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 2010; 24: 862–874.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Genevet A, Tapon N . The Hippo pathway and apico-basal cell polarity. Biochem J 2011; 436: 213–224.

    CAS  PubMed  Google Scholar 

  5. Sebe-Pedros A, Zheng Y, Ia Ruiz-Trillo, Pan D . Premetazoan origin of the hippo signaling pathway. Cell Reports 2012; 1: 13–20.

    CAS  PubMed  Google Scholar 

  6. Hilman D, Gat U . The evolutionary history of YAP and the Hippo/YAP pathway. Mol Biol Evol 2011; 28: 2403–2417.

    CAS  PubMed  Google Scholar 

  7. Lee KP, Lee JH, Kim TS, Kim TH, Park HD, Byun JS et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci USA 2010; 107: 8248–8253.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA 2010; 107: 1431–1436.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 2009; 16: 425–438.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Oh S, Lee D, Kim T, Kim TS, Oh HJ, Hwang CY et al. Crucial role for Mst1 and Mst2 kinases in early embryonic development of the mouse. Mol Cell Biol 2009; 29: 6309–6320.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci USA 2010; 107: 1437–1442.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 2011; 332: 458–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaffney CJ, Oka T, Mazack V, Hilman D, Gat U, Muramatsu T et al. Identification, basic characterization and evolutionary analysis of differentially spliced mRNA isoforms of human YAP1 gene. Gene 2012; 509: 215–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Muramatsu T, Imoto I, Matsui T, Kozaki K, Haruki S, Sudol M et al. YAP is a candidate oncogene for esophageal squamous cell carcinoma. Carcinogenesis 2011; 32: 389–398.

    CAS  PubMed  Google Scholar 

  15. Webb C, Upadhyay A, Giuntini F, Eggleston I, Furutani-Seiki M, Ishima R et al. Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway. Biochemistry 2011; 50: 3300–3309.

    CAS  PubMed  Google Scholar 

  16. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL . A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 2010; 24: 72–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 2010; 285: 37159–37169.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Burglin TR . The TEA domain: a novel, highly conserved DNA-binding motif. Cell 1991; 66: 11–12.

    CAS  PubMed  Google Scholar 

  19. Sudol M, Harvey KF . Modularity in the Hippo signaling pathway. Trends Biochem Sci 2010; 35: 627–633.

    CAS  PubMed  Google Scholar 

  20. Van Hateren NJ, Das RM, Hautbergue GM, Borycki AG, Placzek M, Wilson SA . FatJ acts via the Hippo mediator Yap1 to restrict the size of neural progenitor cell pools. Development 2011; 138: 1893–1902.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S et al. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 2011; 138: 947–957.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet 2008; 40: 1010–1015.

    CAS  PubMed  Google Scholar 

  23. Lawrence PA, Struhl G, Casal J . Do the protocadherins Fat and Dachsous link up to determine both planar cell polarity and the dimensions of organs? Nat Cell Biol 2008; 10: 1379–1382.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Reddy BV, Irvine KD . The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development 2008; 135: 2827–2838.

    CAS  PubMed  Google Scholar 

  25. Sopko R, McNeill H . The skinny on Fat: an enormous cadherin that regulates cell adhesion, tissue growth, and planar cell polarity. Curr Opin Cell Biol 2009; 21: 717–723.

    CAS  PubMed  Google Scholar 

  26. Visser-Grieve S, Hao Y, Yang X . Human homolog of Drosophila expanded, hEx, functions as a putative tumor suppressor in human cancer cell lines independently of the Hippo pathway. Oncogene 2011; 31: 1189–1195.

    PubMed  Google Scholar 

  27. Angus L, Moleirinho S, Herron L, Sinha A, Zhang X, Niestrata M et al. Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP. Oncogene 2011; 31: 238–250.

    PubMed  Google Scholar 

  28. Bennett FC, Harvey KF . Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 2006; 16: 2101–2110.

    CAS  PubMed  Google Scholar 

  29. Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD . Delineation of a Fat tumor suppressor pathway. Nat Genet 2006; 38: 1142–1150.

    CAS  PubMed  Google Scholar 

  30. Silva E, Tsatskis Y, Gardano L, Tapon N, McNeill H . The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol 2006; 16: 2081–2089.

    CAS  PubMed  Google Scholar 

  31. Tyler DM, Baker NE . Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev Biol 2007; 305: 187–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C et al. The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 2006; 16: 2090–2100.

    CAS  PubMed  Google Scholar 

  33. Castillejo-Lopez C, Arias WM, Baumgartner S . The fat-like gene of Drosophila is the true orthologue of vertebrate fat cadherins and is involved in the formation of tubular organs. J Biol Chem 2004; 279: 24034–24043.

    CAS  PubMed  Google Scholar 

  34. Viktorinova I, Konig T, Schlichting K, Dahmann C . The cadherin Fat2 is required for planar cell polarity in the Drosophila ovary. Development 2009; 136: 4123–4132.

    CAS  PubMed  Google Scholar 

  35. Avruch J, Zhou D, Fitamant J, Bardeesy N . Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development. Br J Cancer 2011; 104: 24–32.

    CAS  PubMed  Google Scholar 

  36. Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 2010; 19: 27–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Benhamouche S, Curto M, Saotome I, Gladden AB, Liu CH, Giovannini M et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev 2010; 24: 1718–1730.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cho E, Irvine KD . Action of fat, four-jointed, dachsous and dachs in distal-to-proximal wing signaling. Development 2004; 131: 4489–4500.

    CAS  PubMed  Google Scholar 

  39. Rogulja D, Rauskolb C, Irvine KD . Morphogen control of wing growth through the Fat signaling pathway. Dev Cell 2008; 15: 309–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mao Y, Rauskolb C, Cho E, Hu WL, Hayter H, Minihan G et al. Dachs: an unconventional myosin that functions downstream of Fat to regulate growth, affinity and gene expression in Drosophila. Development 2006; 133: 2539–2551.

    CAS  PubMed  Google Scholar 

  41. Brittle A, Thomas C, Strutt D . Planar polarity specification through asymmetric subcellular localization of Fat and Dachsous. Curr Biol 2012; 22: 907–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Matakatsu H, Blair SS . The DHHC palmitoyltransferase approximated regulates fat signaling and Dachs localization and activity. Curr Biol 2008; 18: 1390–1395.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ambegaonkar AA, Pan G, Mani M, Feng Y, Irvine KD . Propagation of Dachsous–fat planar cell polarity. Curr Biol 2012; 22: 1302–1308.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mao Y, Tournier AL, Bates PA, Gale JE, Tapon N, Thompson BJ . Planar polarization of the atypical myosin Dachs orients cell divisions in Drosophila. Genes Dev 2011; 25: 131–136.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Matakatsu H, Blair SS . Separating the adhesive and signaling functions of the Fat and Dachsous protocadherins. Development 2006; 133: 2315–2324.

    CAS  PubMed  Google Scholar 

  46. Bischof J, Maeda RK, Hediger M, Karch F, Basler K . An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 2007; 104: 3312–3317.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Matakatsu H, Blair SS . Separating planar cell polarity and Hippo pathway activities of the protocadherins Fat and Dachsous. Development 2012; 139: 1498–1508.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM . A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 2004; 431: 325–329.

    CAS  PubMed  Google Scholar 

  49. Zhang H, Berg JS, Li Z, Wang Y, Lang P, Sousa AD et al. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 2004; 6: 523–531.

    PubMed  Google Scholar 

  50. Bulgakova NA, Knust E . The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci 2009; 122 (Part 15): 2587–2596.

    CAS  PubMed  Google Scholar 

  51. Oka T, Schmitt AP, Sudol M . Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene 2011; 31: 128–134.

    PubMed  Google Scholar 

  52. Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W . Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 2011; 286: 7018–7026.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 2011; 25: 51–63.

    PubMed  PubMed Central  Google Scholar 

  54. Wang W, Huang J, Chen J . Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem 2011; 286: 4364–4370.

    CAS  PubMed  Google Scholar 

  55. Ernkvist M, Aase K, Ukomadu C, Wohlschlegel J, Blackman R, Veitonmaki N et al. P130-angiomotin associates to actin and controls endothelial cell shape. FEBS J 2006; 273: 2000–2011.

    CAS  PubMed  Google Scholar 

  56. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell 2010; 19: 831–844.

    CAS  PubMed  Google Scholar 

  57. Chen HI, Einbond A, Kwak SJ, Linn H, Koepf E, Peterson S et al. Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands. J Biol Chem 1997; 272: 17070–17077.

    CAS  PubMed  Google Scholar 

  58. Kay BK, Williamson MP, Sudol M . The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 2000; 14: 231–241.

    CAS  PubMed  Google Scholar 

  59. Oka T, Remue E, Meerschaert K, Vanloo B, Boucherie C, Gfeller D et al. Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem J 2010; 432: 461–472.

    CAS  PubMed  Google Scholar 

  60. Oka T, Sudol M . Nuclear localization and pro-apoptotic signaling of YAP2 require intact PDZ-binding motif. Genes Cells 2009; 14: 607–615.

    CAS  PubMed  Google Scholar 

  61. Chen CL, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C et al. The apical–basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci USA 2010; 107: 15810–15815.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ling C, Zheng Y, Yin F, Yu J, Huang J, Hong Y et al. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci USA 2010; 107: 10532–10537.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Robinson BS, Huang J, Hong Y, Moberg KH . Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 2010; 20: 582–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yu J, Zheng Y, Dong J, Klusza S, Deng W-M, Pan D . Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Develop Cell 2010; 18: 288–299.

    CAS  Google Scholar 

  65. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 2006; 8: 27–36.

    CAS  PubMed  Google Scholar 

  66. Oh H, Reddy BV, Irvine KD . Phosphorylation-independent repression of Yorkie in Fat-Hippo signaling. Dev Biol 2009; 335: 188–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Badouel C, Gardano L, Amin N, Garg A, Rosenfeld R, Le Bihan T et al. The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev Cell 2009; 16: 411–420.

    CAS  PubMed  Google Scholar 

  68. Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE . Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 2010; 20: 573–581.

    CAS  PubMed  Google Scholar 

  69. Parsons LM, Grzeschik NA, Allott ML, Richardson HE . Lgl/aPKC and Crb regulate the Salvador/Warts/Hippo pathway. Fly (Austin) 2010; 4: 288–293.

    CAS  Google Scholar 

  70. Pellock BJ, Buff E, White K, Hariharan IK . The Drosophila tumor suppressors Expanded and Merlin differentially regulate cell cycle exit, apoptosis, and Wingless signaling. Dev Biol 2007; 304: 102–115.

    CAS  PubMed  Google Scholar 

  71. Boedigheimer MJ, Nguyen KP, Bryant PJ . Expanded functions in the apical cell domain to regulate the growth rate of imaginal discs. Dev Genet 1997; 20: 103–110.

    CAS  PubMed  Google Scholar 

  72. Jaramillo BE, Ponce A, Moreno J, Betanzos A, Huerta M, Lopez-Bayghen E et al. Characterization of the tight junction protein ZO-2 localized at the nucleus of epithelial cells. Exp Cell Res 2004; 297: 247–258.

    CAS  PubMed  Google Scholar 

  73. Remue E, Meerschaert K, Oka T, Boucherie C, Vandekerckhove J, Sudol M et al. TAZ interacts with zonula occludens-1 and -2 proteins in a PDZ-1 dependent manner. FEBS Lett 2010; 584: 4175–4180.

    CAS  PubMed  Google Scholar 

  74. Leys SP, Riesgo A . Epithelia, an evolutionary novelty of metazoans. J Exp Zool Part B 2012; 318: 438–447.

    Google Scholar 

  75. Yue T, Tian A, Jiang J . The cell adhesion molecule echinoid functions as a tumor suppressor and upstream regulator of the Hippo signaling pathway. Develop Cell 2012; 22: 255–267.

    CAS  Google Scholar 

  76. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012; 150: 780–791.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Enomoto M, Igaki T . Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in Drosophila. EMBO Rep 2013; 14: 65–72.

    CAS  PubMed  Google Scholar 

  78. Boggiano JC, Fehon RG . Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling. Dev Cell 2012; 22: 695–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bosveld F, Bonnet I, Guirao B, Tlili S, Wang Z, Petitalot A et al. Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science 2012; 336: 724–727.

    CAS  PubMed  Google Scholar 

  80. Liu KC, Jacobs DT, Dunn BD, Fanning AS, Cheney RE . Myosin-X functions in polarized epithelial cells. Mol Biol Cell 2012; 23: 1675–1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Toyoshima F, Nishida E . Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J 2007; 26: 1487–1498.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim NG, Koh E, Chen X, Gumbiner BM . E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 2011; 108: 11930–11935.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ishiuchi T, Misaki K, Yonemura S, Takeichi M, Tanoue T . Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J Cell Biol 2009; 185: 959–967.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mauviel A, Nallet-Staub F, Varelas X . Integrating developmental signals: a Hippo in the (path) way. Oncogene 2011; 31: 1743–1756.

    PubMed  Google Scholar 

  85. Polesello C, Tapon N . Salvador–warts–hippo signaling promotes Drosophila posterior follicle cell maturation downstream of notch. Curr Biol 2007; 17: 1864–1870.

    CAS  PubMed  Google Scholar 

  86. Bu X, Avraham HK, Li X, Lim B, Jiang S, Fu Y et al. Mayven induces c-Jun expression and cyclin D1 activation in breast cancer cells. Oncogene 2005; 24: 2398–2409.

    CAS  PubMed  Google Scholar 

  87. MacDougall N, Lad Y, Wilkie GS, Francis-Lang H, Sullivan W, Davis I . Merlin, the Drosophila homologue of neurofibromatosis-2, is specifically required in posterior follicle cells for axis formation in the oocyte. Development 2001; 128: 665–673.

    CAS  PubMed  Google Scholar 

  88. Milton CC, Zhang X, Albanese NO, Harvey KF . Differential requirement of Salvador–Warts–Hippo pathway members for organ size control in Drosophila melanogaster. Development 2010; 137: 735–743.

    CAS  PubMed  Google Scholar 

  89. Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM, Camargo FD et al. Alpha-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Science Signal 2011; 4 ra33.

    PubMed  PubMed Central  Google Scholar 

  90. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 2011; 144: 782–795.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H . The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell 2010; 18: 309–316.

    CAS  PubMed  Google Scholar 

  92. Boedigheimer M, Laughon A . Expanded: a gene involved in the control of cell proliferation in imaginal discs. Development 1993; 118: 1291–1301.

    CAS  PubMed  Google Scholar 

  93. Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N . Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 2010; 18: 300–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. McCartney BM, Kulikauskas RM, LaJeunesse DR, Fehon RG . The Neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development 2000; 127: 1315–1324.

    CAS  PubMed  Google Scholar 

  95. Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D . Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 2010; 18: 288–299.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Langer EM, Feng Y, Zhaoyuan H, Rauscher FJ III, Kroll KL, Longmore GD et al. Proteins are snail/slug corepressors required for neural crest development in Xenopus. Dev Cell 2008; 14: 424–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Marie H, Pratt SJ, Betson M, Epple H, Kittler JT, Meek L et al. The LIM protein Ajuba is recruited to cadherin-dependent cell junctions through an association with alpha-catenin. J Biol Chem 2003; 278: 1220–1228.

    CAS  PubMed  Google Scholar 

  98. Humbert PO, Grzeschik NA, Brumby AM, Galea R, Elsum I, Richardson HE . Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 2008; 27: 6888–6907.

    CAS  PubMed  Google Scholar 

  99. Grzeschik NA, Parsons LM, HE Richardson . Lgl, the SWH pathway and tumorigenesis: it’s a matter of context & competition!. Cell Cycle 2010; 9: 3202–3212.

    CAS  PubMed  Google Scholar 

  100. Ziosi M, Baena-Lopez LA, Grifoni D, Froldi F, Pession A, Garoia F et al. dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells. PLoS Genet 2010; 6: e1001140.

    PubMed  PubMed Central  Google Scholar 

  101. Menendez J, Perez-Garijo A, Calleja M, Morata G . A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc Natl Acad Sci USA 2010; 107: 14651–14656.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Muller HA, Bossinger O . Molecular networks controlling epithelial cell polarity in development. Mech Dev 2003; 120: 1231–1256.

    CAS  PubMed  Google Scholar 

  103. Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 2002; 129: 5719–5730.

    CAS  PubMed  Google Scholar 

  104. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA et al. Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012; 26: 1300–1305.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs Alfred Handler, Giuliano Gasperi and Stephen Richards of the Medfly Whole Genome Sequencing Consortium for providing the draft genome sequence of Ceratitis capitata. We thank Lisa McCord for assistance with graphical representation, and also Dr Ryan Udan, Dr Maria Willecke and Chunyao Tao for help in performing the screen, experimental input and valuable discussions. This study was supported in part by grants from Department of Defense (NF093145 to DP) and from the National Institute of Health (GM067997 to GH). QC is a recipient of a Breast Cancer Research Postdoctoral Fellowship from the Department of Defense (BC093902). DP is an investigator of the Howard Hughes Medical Institute.

Author contributions

WB initiated and designed the work, performed evolutionary tracing of the different genes and analyzed the results; WB and CLC performed and analyzed the Drosophila experiments; QC designed, performed and analyzed the mouse experiments; DJP designed and analyzed the mouse experiments; MS provided analysis for the Yap/Yki and Amot data; AK performed evolutionary tracing; GH led and designed the experiments; and WB and GH wrote the manuscript with input from all other authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Halder.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bossuyt, W., Chen, CL., Chen, Q. et al. An evolutionary shift in the regulation of the Hippo pathway between mice and flies. Oncogene 33, 1218–1228 (2014). https://doi.org/10.1038/onc.2013.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.82

Keywords

This article is cited by

Search

Quick links