Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Oncoprotein stabilization in brain tumors

Abstract

Proteins involved in promoting cell proliferation and viability need to be timely expressed and carefully controlled for the proper development of the brain but also efficiently degraded in order to prevent cells from becoming brain cancer cells. A major pathway for targeted protein degradation in cells is the ubiquitin–proteasome system (UPS). Oncoproteins that drive tumor development and tumor maintenance are often deregulated and stabilized in malignant cells. This can occur when oncoproteins escape degradation by the UPS because of mutations in either the oncoprotein itself or in the UPS components responsible for recognition and ubiquitylation of the oncoprotein. As the pathogenic accumulation of an oncoprotein can lead to effectively sustained cell growth, viability and tumor progression, it is an indisputable target for cancer treatment. The most common types of malignant brain tumors in children and adults are medulloblastoma and glioma, respectively. Here, we review different ways of how deregulated proteolysis of oncoproteins involved in major signaling cancer pathways contributes to medulloblastoma and glioma development. We also describe means of targeting relevant oncoproteins in brain tumors with treatments affecting their stability or therapeutic strategies directed against the UPS itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Frange P, Alapetite C, Gaboriaud G, Bours D, Zucker JM, Zerah M et al. From childhood to adulthood: long-term outcome of medulloblastoma patients. The Institut Curie experience (1980-2000). J Neurooncol 2009; 95: 271–279.

    CAS  PubMed  Google Scholar 

  2. Huse JT, Holland EC . Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 2010; 10: 319–331.

    CAS  PubMed  Google Scholar 

  3. Hershko A, Ciechanover A . The ubiquitin system. Annu Rev Biochem. 1998; 67: 425–479.

    CAS  PubMed  Google Scholar 

  4. Driscoll J, Goldberg AL . The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. J Biol Chem 1990; 265: 4789–4792.

    CAS  PubMed  Google Scholar 

  5. Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, Cho YJ et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer. 2012; 12: 818–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT . The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 1996; 10: 1443–1454.

    CAS  PubMed  Google Scholar 

  7. Zurawel RH, Chiappa SA, Allen C, Raffel C . Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res 1998; 58: 896–899.

    CAS  PubMed  Google Scholar 

  8. Bhatia N, Thiyagarajan S, Elcheva I, Saleem M, Dlugosz A, Mukhtar H et al. Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J Biol Chem 2006; 281: 19320–19326.

    CAS  PubMed  Google Scholar 

  9. Northcott PA, Hielscher T, Dubuc A, Mack S, Shih D, Remke M et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol 2011; 122: 231–240.

    PubMed  PubMed Central  Google Scholar 

  10. Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85: 841–851.

    CAS  PubMed  Google Scholar 

  11. Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996; 272: 1668–1671.

    CAS  PubMed  Google Scholar 

  12. Thomas WD, Chen J, Gao YR, Cheung B, Koach J, Sekyere E et al. Patched1 deletion increases N-Myc protein stability as a mechanism of medulloblastoma initiation and progression. Oncogene 2009; 28: 1605–1615.

    CAS  PubMed  Google Scholar 

  13. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 2008; 3: e3088.

    PubMed  PubMed Central  Google Scholar 

  14. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 2011; 29: 1424–1430.

    PubMed  Google Scholar 

  15. Valentijn LJ, Koster J, Haneveld F, Aissa RA, van Sluis P, Broekmans ME et al. Functional MYCN signature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proc Natl Acad Sci USA. 2012; 109: 19190–19195.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen J, McKay RM, Parada LF . Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 2012; 149: 36–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22: 425–437.

    CAS  PubMed  Google Scholar 

  18. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peschard P, Park M . Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell 2003; 3: 519–523.

    CAS  PubMed  Google Scholar 

  20. Fang D, Wang HY, Fang N, Altman Y, Elly C, Liu YC . Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J Biol Chem 2001; 276: 4872–4878.

    CAS  PubMed  Google Scholar 

  21. Kuchay S, Duan S, Schenkein E, Peschiaroli A, Saraf A, Florens L et al. FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nat Cell Biol 2013; 15: 472–480.

    CAS  PubMed  Google Scholar 

  22. Mao JH, Kim IJ, Wu D, Climent J, Kang HC, DelRosario R et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 2008; 321: 1499–1502.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haupt Y, Maya R, Kazaz A, Oren M . Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    CAS  PubMed  Google Scholar 

  24. Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA . Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci USA 1980; 77: 1783–1786.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ciehanover A, Hod Y, Hershko A . A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun 1978; 81: 1100–1105.

    CAS  PubMed  Google Scholar 

  26. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137: 133–145.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen ZJ, Sun LJ . Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009; 33: 275–286.

    CAS  PubMed  Google Scholar 

  28. Clague MJ, Coulson JM, Urbe S . Cellular functions of the DUBs. J Cell Sci 2012; 125 (Pt 2): 277–286.

    CAS  PubMed  Google Scholar 

  29. Weissman AM . Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2001; 2: 169–178.

    CAS  PubMed  Google Scholar 

  30. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 2008; 3: e1487.

    PubMed  PubMed Central  Google Scholar 

  31. Metzger MB, Hristova VA, Weissman AM . HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 2012; 125 (Pt 3): 531–537.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Teixeira LK, Reed SI . Ubiquitin ligases and cell cycle control. Annu Rev Biochem 2013; 82: 387.

    CAS  PubMed  Google Scholar 

  33. Skaar JR, D'Angiolella V, Pagan JK, Pagano M . SnapShot: F Box Proteins II. Cell 2009; 137: 1358, e1.

    Google Scholar 

  34. Swartling FJ, Hede SM, Weiss WA . What underlies the diversity of brain tumors? Cancer Metastasis Rev 2012; 32: 5–24.

    Google Scholar 

  35. Lee J, Platt KA, Censullo P, Ruiz i Altaba A . Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 1997; 124: 2537–2552.

    CAS  PubMed  Google Scholar 

  36. Lee JH, Gleeson JG . The role of primary cilia in neuronal function. Neurobiol Dis 2010; 38: 167–172.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lai K, Kaspar BK, Gage FH, Schaffer DV . Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 2003; 6: 21–27.

    CAS  PubMed  Google Scholar 

  38. Wang C, Pan Y, Wang B . Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development 2010; 137: 2001–2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico MA et al. Numb is a suppressor of Hedgehog signaling and targets Gli1 for Itch-dependent ubiquitination. Nat cell Biol 2006; 8: 1415–1423.

    CAS  PubMed  Google Scholar 

  40. Wang B, Li Y . Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing. Proc Natl Acad Sci USA 2006; 103: 33–38.

    CAS  PubMed  Google Scholar 

  41. Katoh M . WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007; 13: 4042–4045.

    CAS  PubMed  Google Scholar 

  42. Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner T et al. Subgroup-specific structural variation across 1000 medulloblastoma genomes. Nature 2012; 488: 49–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P . Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 1997; 275: 1790–1792.

    CAS  PubMed  Google Scholar 

  44. Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H et al. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 1999; 9: 207–210.

    CAS  PubMed  Google Scholar 

  45. Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 2010; 468: 1095–1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P et al. APC mutations in sporadic medulloblastomas. Am J Pathol 2000; 156: 433–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Louvi A, Artavanis-Tsakonas S . Notch signaling in vertebrate neural development. Nat Rev Neurosci 2006; 7: 93–102.

    CAS  PubMed  Google Scholar 

  48. Koch U, Lehal R, Radtke F . Stem cells living with a Notch. Development 2013; 140: 689–704.

    CAS  PubMed  Google Scholar 

  49. Bray SJ . Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006; 7: 678–689.

    CAS  PubMed  Google Scholar 

  50. Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U . The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 2001; 276: 35847–35853.

    CAS  PubMed  Google Scholar 

  51. Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E et al. Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 2001; 276: 34371–34378.

    CAS  PubMed  Google Scholar 

  52. Fryer CJ, White JB, Jones KA . Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004; 16: 509–520.

    CAS  PubMed  Google Scholar 

  53. Natarajan S, Li Y, Miller EE, Shih DJ, Taylor MD, Stearns TM et al. Notch1-induced brain tumor models the sonic hedgehog subgroup of human medulloblastoma. Cancer Res 2013; 73: 5381–5390.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan X, Mikolaenko I, Elhassan I, Ni X, Wang Y, Ball D et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 2004; 64: 7787–7793.

    CAS  PubMed  Google Scholar 

  55. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006; 9: 157–173.

    CAS  PubMed  Google Scholar 

  56. Lemmon MA, Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2010; 141: 1117–1134.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Andrae J, Gallini R, Betsholtz C . Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22: 1276–1312.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S et al. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 2006; 51: 187–199.

    CAS  PubMed  Google Scholar 

  59. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A . Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 2006; 26: 7907–7918.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Marmor MD, Yarden Y . Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 2004; 23: 2057–2070.

    CAS  PubMed  Google Scholar 

  61. Mosesson Y, Shtiegman K, Katz M, Zwang Y, Vereb G, Szollosi J et al. Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J Biol Chem 2003; 278: 21323–21326.

    CAS  PubMed  Google Scholar 

  62. Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA . Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 2002; 62: 3729–3735.

    CAS  PubMed  Google Scholar 

  63. Hermanson M, Funa K, Koopmann J, Maintz D, Waha A, Westermark B et al. Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. Cancer Res 1996; 56: 164–171.

    CAS  PubMed  Google Scholar 

  64. TCGA, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Google Scholar 

  65. Uhrbom L, Hesselager G, Nister M, Westermark B . Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 1998; 58: 5275–5279.

    CAS  PubMed  Google Scholar 

  66. Hede SM, Hansson I, Afink GB, Eriksson A, Nazarenko I, Andrae J et al. GFAP promoter driven transgenic expression of PDGFB in the mouse brain leads to glioblastoma in a Trp53 null background. Glia 2009; 57: 1143–1153.

    PubMed  Google Scholar 

  67. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC . PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001; 15: 1913–1925.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shih AH, Dai C, Hu X, Rosenblum MK, Koutcher JA, Holland EC . Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Res 2004; 64: 4783–4789.

    CAS  PubMed  Google Scholar 

  69. Ohgaki H, Kleihues P . Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007; 170: 1445–1453.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Frederick L, Wang XY, Eley G, James CD . Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 2000; 60: 1383–1387.

    CAS  PubMed  Google Scholar 

  71. Schmidt MH, Furnari FB, Cavenee WK, Bogler O . Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci USA 2003; 100: 6505–6510.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hartman Z, Zhao H, Agazie YM . HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in a manner that overcomes regulatory mechanisms and promotes proliferative and transformation signaling. Oncogene 2012; 32: 4169–4180.

    PubMed  PubMed Central  Google Scholar 

  73. Choi OR, Trainor C, Graf T, Beug H, Engel JD . A single amino acid substitution in v-erbB confers a thermolabile phenotype to ts167 avian erythroblastosis virus-transformed erythroid cells. Mol Cell Biol 1986; 6: 1751–1759.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H et al. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 2003; 63: 1589–1595.

    CAS  PubMed  Google Scholar 

  75. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 1997; 57: 5391–5398.

    CAS  PubMed  Google Scholar 

  76. Yokouchi M, Kondo T, Sanjay A, Houghton A, Yoshimura A, Komiya S et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem 2001; 276: 35185–35193.

    CAS  PubMed  Google Scholar 

  77. Zhou L, Yang H . The von Hippel-Lindau tumor suppressor protein promotes c-Cbl-independent poly-ubiquitylation and degradation of the activated EGFR. PloS One 2011; 6: e23936.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Massague J . TGFbeta signaling in context. Nat Rev Mol Cell Biol 2012; 13: 616–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. De Boeck M, ten Dijke P . Key role for ubiquitin protein modification in TGFbeta signal transduction. Upsala J Med Sci 2012; 117: 153–165.

    PubMed  PubMed Central  Google Scholar 

  80. Heldin CH, Landstrom M, Moustakas A . Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 2009; 21: 166–176.

    CAS  PubMed  Google Scholar 

  81. Seoane J, Le HV, Shen L, Anderson SA, Massague J . Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004; 117: 211–223.

    CAS  PubMed  Google Scholar 

  82. Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A et al. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 2007; 11: 147–160.

    CAS  PubMed  Google Scholar 

  83. Eichhorn PJ, Rodon L, Gonzalez-Junca A, Dirac A, Gili M, Martinez-Saez E et al. USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat Med 2012; 18: 429–435.

    CAS  PubMed  Google Scholar 

  84. Yuan TL, Cantley LC . PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008; 27: 5497–5510.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    CAS  PubMed  Google Scholar 

  86. Fang D, Liu YC . Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat Immunol 2001; 2: 870–875.

    CAS  PubMed  Google Scholar 

  87. Guo H, Qiao G, Ying H, Li Z, Zhao Y, Liang Y et al. E3 ubiquitin ligase Cbl-b regulates Pten via Nedd4 in T cells independently of its ubiquitin ligase activity. Cell Rep 2012; 1: 472–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 2007; 128: 129–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fouladkou F, Landry T, Kawabe H, Neeb A, Lu C, Brose N et al. The ubiquitin ligase Nedd4-1 is dispensable for the regulation of PTEN stability and localization. Proc Natl Acad Sci USA. 2008; 105: 8585–8590.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Maddika S, Kavela S, Rani N, Palicharla VR, Pokorny JL, Sarkaria JN et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nat Cell Biol 2011; 13: 728–733.

    PubMed  PubMed Central  Google Scholar 

  91. Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 1997; 57: 4183–4186.

    CAS  PubMed  Google Scholar 

  92. Fan QW, Weiss WA . Inhibition of PI3K-Akt-mTOR signaling in glioblastoma by mTORC1/2 inhibitors. Methods Mol Biol 2012; 821: 349–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao Y, Sun Y . Targeting the mTOR-DEPTOR pathway by CRL E3 ubiquitin ligases: therapeutic application. Neoplasia 2012; 14: 360–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Knoepfler PS, Cheng PF, Eisenman RN . N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 2002; 16: 2699–2712.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Thomas LR, Tansey WP . Proteolytic control of the oncoprotein transcription factor Myc. Adv Cancer Res 2011; 110: 77–106.

    CAS  PubMed  Google Scholar 

  96. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 2004; 101: 9085–9090.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116–2125.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Choi SH, Wright JB, Gerber SA, Cole MD . Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes Dev 2010; 24: 1236–1241.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Popov N, Schulein C, Jaenicke LA, Eilers M . Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nat Cell Biol 2010; 12: 973–981.

    CAS  PubMed  Google Scholar 

  100. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 2003; 11: 1189–1200.

    CAS  PubMed  Google Scholar 

  101. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP . Skp2 regulates Myc protein stability and activity. Mol Cell 2003; 11: 1177–1188.

    CAS  PubMed  Google Scholar 

  102. Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 2005; 123: 409–421.

    CAS  PubMed  Google Scholar 

  103. Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, Guillemot F et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol 2008; 10: 643–653.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cepeda D, Ng HF, Sharifi HR, Mahmoudi S, Cerrato VS, Fredlund E et al. CDK-mediated activation of the SCF ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Mol Med 2013; 5: 999–1018.

    CAS  PubMed Central  Google Scholar 

  105. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14: 2501–2514.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 2004; 6: 308–318.

    CAS  PubMed  Google Scholar 

  107. Buckley SM, Aranda-Orgilles B, Strikoudis A, Apostolou E, Loizou E, Moran-Crusio K et al. Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell 2012; 11: 783–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    CAS  PubMed  Google Scholar 

  109. Swartling FJ . Myc proteins in brain tumor development and maintenance. Ups J Med Sci 2012; 117: 122–131.

    PubMed  PubMed Central  Google Scholar 

  110. Aldosari N, Bigner SH, Burger PC, Becker L, Kepner JL, Friedman HS et al. MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children's Oncology Group. Arch Pathol Lab Med 2002; 126: 540–544.

    PubMed  Google Scholar 

  111. Korshunov A, Remke M, Kool M, Hielscher T, Northcott PA, Williamson D et al. Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathol 2012; 123: 515–527.

    CAS  PubMed  Google Scholar 

  112. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, Popov S et al. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 2013; 3: 512–519.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Perry A, Miller CR, Gujrati M, Scheithauer BW, Zambrano SC, Jost SC et al. Malignant gliomas with primitive neuroectodermal tumor-like components: a clinicopathologic and genetic study of 53 cases. Brain Pathol 2009; 19: 81–90.

    PubMed  Google Scholar 

  114. Kawauchi D, Robinson G, Uziel T, Gibson P, Rehg J, Gao C et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 2012; 21: 168–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pei Y, Moore CE, Wang J, Tewari AK, Eroshkin A, Cho YJ et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 2012; 21: 155–167.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Swartling FJ, Grimmer MR, Hackett CS, Northcott PA, Fan QW, Goldenberg DD et al. Pleiotropic role for MYCN in medulloblastoma. Genes Dev 2010; 24: 1059–1072.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Swartling FJ, Savov V, Persson AI, Chen J, Hackett CS, Northcott PA et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 2012; 21: 601–613.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Vousden KH, Prives C . Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413–431.

    CAS  PubMed  Google Scholar 

  119. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM . Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000; 275: 8945–8951.

    CAS  PubMed  Google Scholar 

  120. Momand J, Zambetti GP, Olson DC, George D, Levine AJ . The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245.

    CAS  PubMed  Google Scholar 

  121. Jackson MW, Berberich SJ . MdmX protects p53 from Mdm2-mediated degradation. Mol Cell Biol 2000; 20: 1001–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kruse JP, Gu W . Modes of p53 regulation. Cell 2009; 137: 609–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang X, Jiang X . Mdm2 and MdmX partner to regulate p53. FEBS Lett 2012; 586: 1390–1396.

    CAS  PubMed  Google Scholar 

  124. Love IM, Grossman SR . It takes 15 to Tango: making sense of the many ubiquitin ligases of p53. Genes Cancer 2012; 3: 249–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Jung YS, Qian Y, Chen X . Pirh2 RING-finger E3 ubiquitin ligase: its role in tumorigenesis and cancer therapy. FEBS Lett 2012; 586: 1397–1402.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu H, Pomeroy SL, Ferreira M, Teider N, Mariani J, Nakayama KI et al. UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53. Nat Med 2011; 17: 347–355.

    CAS  PubMed  Google Scholar 

  127. Zhukova N, Ramaswamy V, Remke M, Pfaff E, Shih DJ, Martin DC et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 2013; 31: 2927–2935.

    PubMed  PubMed Central  Google Scholar 

  128. Kunkele A, De Preter K, Heukamp L, Thor T, Pajtler KW, Hartmann W et al. Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas. Neuro Oncol 2012; 14: 859–869.

    PubMed  PubMed Central  Google Scholar 

  129. Carrano AC, Eytan E, Hershko A, Pagano M . SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1: 193–199.

    CAS  PubMed  Google Scholar 

  130. Marti A, Wirbelauer C, Scheffner M, Krek W . Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1999; 1: 14–19.

    CAS  PubMed  Google Scholar 

  131. Peart MJ, Poyurovsky MV, Kass EM, Urist M, Verschuren EW, Summers MK et al. APC/C(Cdc20) targets E2F1 for degradation in prometaphase. Cell Cycle 2010; 9: 3956–3964.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Visintin R, Prinz S, Amon A . CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 1997; 278: 460–463.

    CAS  PubMed  Google Scholar 

  133. Puram SV, Bonni A . Novel functions for the anaphase-promoting complex in neurobiology. Sem Cell Develop Biol 2011; 22: 586–594.

    CAS  Google Scholar 

  134. Lasorella A, Stegmuller J, Guardavaccaro D, Liu G, Carro MS, Rothschild G et al. Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature 2006; 442: 471–474.

    CAS  PubMed  Google Scholar 

  135. Vlachostergios PJ, Voutsadakis IA, Papandreou CN . The ubiquitin-proteasome system in glioma cell cycle control. Cell Div 2012; 7: 18.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Schiffer D, Cavalla P, Fiano V, Ghimenti C, Piva R . Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neurosci Lett 2002; 328: 125–128.

    CAS  PubMed  Google Scholar 

  137. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 2010; 42: 77–82.

    CAS  PubMed  Google Scholar 

  138. Penas C, Ramachandran V, Ayad NG . The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis. Front Oncol 2011; 1: 60.

    PubMed  Google Scholar 

  139. Hsu JY, Reimann JD, Sorensen CS, Lukas J, Jackson PK . E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat Cell Biol 2002; 4: 358–366.

    CAS  PubMed  Google Scholar 

  140. Lehman NL, Verschuren EW, Hsu JY, Cherry AM, Jackson PK . Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle 2006; 5: 1569–1573.

    CAS  PubMed  Google Scholar 

  141. Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK . Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 2003; 4: 813–826.

    CAS  PubMed  Google Scholar 

  142. Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M et al. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 2003; 4: 799–812.

    CAS  PubMed  Google Scholar 

  143. Ben-Neriah Y, Karin M . Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 2011; 12: 715–723.

    CAS  PubMed  Google Scholar 

  144. Gilmore TD . Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006; 25: 6680–6684.

    CAS  PubMed  Google Scholar 

  145. Harhaj EW, Dixit VM . Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res 2011; 21: 22–39.

    CAS  PubMed  Google Scholar 

  146. Arabi A, Ullah K, Branca RM, Johansson J, Bandarra D, Haneklaus M et al. Proteomic screen reveals Fbw7 as a modulator of the NF-kappaB pathway. Nat Commun 2012; 3: 976.

    PubMed  Google Scholar 

  147. Busino L, Millman SE, Scotto L, Kyratsous CA, Basrur V, O'Connor O et al. Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat Cell Biol 2012; 14: 375–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Fukushima H, Matsumoto A, Inuzuka H, Zhai B, Lau AW, Wan L et al. SCF(Fbw7) modulates the NFkB signaling pathway by targeting NFkB2 for ubiquitination and destruction. Cell Rep 2012; 1: 434–443.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Bredel M, Scholtens DM, Yadav AK, Alvarez AA, Renfrow JJ, Chandler JP et al. NFKBIA deletion in glioblastomas. N Engl J Med 2011; 364: 627–637.

    CAS  PubMed  Google Scholar 

  150. Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN . Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 2004; 84: 941–951.

    CAS  PubMed  Google Scholar 

  151. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB . The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 2006; 8: 261–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Cohen P, Tcherpakov M . Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 2010; 143: 686–693.

    CAS  PubMed  Google Scholar 

  153. Lauth M, Bergstrom A, Shimokawa T, Toftgard R . Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA. 2007; 104: 8455–8460.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Buczkowicz P, Ma J, Hawkins C . GLI2 is a potential therapeutic target in pediatric medulloblastoma. J Neuropathol Exp Neurol 2011; 70: 430–437.

    CAS  PubMed  Google Scholar 

  155. Kim J, Lee JJ, Gardner D, Beachy PA . Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci USA 2010; 107: 13432–13437.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Saifo MS, Rempinski DR Jr, Rustum YM, Azrak RG . Targeting the oncogenic protein beta-catenin to enhance chemotherapy outcome against solid human cancers. Mol Cancer 2010; 9: 310.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kenney AM, Widlund HR, Rowitch DH . Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 2004; 131: 217–228.

    CAS  PubMed  Google Scholar 

  158. Chesler L, Schlieve C, Goldenberg DD, Kenney A, Kim G, McMillan A et al. Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res 2006; 66: 8139–8146.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Johnsen JI, Segerstrom L, Orrego A, Elfman L, Henriksson M, Kagedal B et al. Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene 2008; 27: 2910–2922.

    CAS  PubMed  Google Scholar 

  160. Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006; 9: 341–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 2009; 15: 67–78.

    CAS  PubMed  Google Scholar 

  162. Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE, Rycak L et al. Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell 2013; 24: 75–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM et al. Modelling Myc inhibition as a cancer therapy. Nature 2008; 455: 679–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Larsson LG, Henriksson MA . The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res 2010; 316: 1429–1437.

    CAS  PubMed  Google Scholar 

  165. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med. 2011; 364: 1046–1060.

    CAS  PubMed  Google Scholar 

  166. Ruschak AM, Slassi M, Kay LE, Schimmer AD . Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 2011; 103: 1007–1017.

    CAS  PubMed  Google Scholar 

  167. Friday BB, Anderson SK, Buckner J, Yu C, Giannini C, Geoffroy F et al. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro Oncol 2012; 14: 215–221.

    CAS  PubMed  Google Scholar 

  168. Wolff JE, Brown RE, Buryanek J, Pfister S, Vats TS, Rytting ME . Preliminary experience with personalized and targeted therapy for pediatric brain tumors. Pediatr Blood Cancer 2012; 59: 27–33.

    PubMed  Google Scholar 

  169. Breitschopf K, Zeiher AM, Dimmeler S . Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J Biol Chem 2000; 275: 21648–21652.

    CAS  PubMed  Google Scholar 

  170. Chang YC, Lee YS, Tejima T, Tanaka K, Omura S, Heintz NH et al. mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway. Cell Growth Differ 1998; 9: 79–84.

    CAS  PubMed  Google Scholar 

  171. Ohshima-Hosoyama S, Davare MA, Hosoyama T, Nelon LD, Keller C . Bortezomib stabilizes NOXA and triggers ROS-associated apoptosis in medulloblastoma. J Neurooncol 2011; 105: 475–483.

    CAS  PubMed  Google Scholar 

  172. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009; 458: 732–736.

    CAS  PubMed  Google Scholar 

  173. Swords RT, Kelly KR, Smith PG, Garnsey JJ, Mahalingam D, Medina E et al. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia. Blood 2010; 115: 3796–3800.

    CAS  PubMed  Google Scholar 

  174. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    CAS  PubMed  Google Scholar 

  175. Garcia D, Warr MR, Martins CP, Brown Swigart L, Passegue E, Evan GI . Validation of MdmX as a therapeutic target for reactivating p53 in tumors. Genes Dev 2011; 25: 1746–1757.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004; 10: 1321–1328.

    CAS  PubMed  Google Scholar 

  177. Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 2009; 15: 376–388.

    CAS  PubMed  Google Scholar 

  178. Guardavaccaro D, Pagano M . Oncogenic aberrations of cullin-dependent ubiquitin ligases. Oncogene 2004; 23: 2037–2049.

    CAS  PubMed  Google Scholar 

  179. Ayrault O, Zindy F, Rehg J, Sherr CJ, Roussel MF . Two tumor suppressors, p27Kip1 and patched-1, collaborate to prevent medulloblastoma. Mol Cancer Res 2009; 7: 33–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 2008; 111: 4690–4699.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ . Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem Biol 2012; 19: 1515–1524.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 2013; 154: 556–568.

    CAS  PubMed  Google Scholar 

  183. Karin M . Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–436.

    CAS  PubMed  Google Scholar 

  184. Nakajima H, Fujiwara H, Furuichi Y, Tanaka K, Shimbara N . A novel small-molecule inhibitor of NF-kappaB signaling. Biochem Biophys Res Commun 2008; 368: 1007–1013.

    CAS  PubMed  Google Scholar 

  185. Tan Y, Sangfelt O, Spruck C . The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett 2008; 271: 1–12.

    CAS  PubMed  Google Scholar 

  186. Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 2005; 65: 8679–8689.

    CAS  PubMed  Google Scholar 

  187. Kim HS, Woolard K, Lai C, Bauer PO, Maric D, Song H et al. Gliomagenesis arising from Pten- and Ink4a/Arf-deficient neural progenitor cells is mediated by the p53-Fbxw7/Cdc4 pathway, which controls c-Myc. Cancer Res 2012; 72: 6065–6075.

    CAS  PubMed  Google Scholar 

  188. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119–128.

    CAS  PubMed  Google Scholar 

  189. Sanchez I, Yuan J . A convoluted way to die. Neuron 2001; 29: 563–566.

    CAS  PubMed  Google Scholar 

  190. Hoeck JD, Jandke A, Blake SM, Nye E, Spencer-Dene B, Brandner S et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci 2010; 13: 1365–1372.

    CAS  PubMed  Google Scholar 

  191. Jandke A, Da Costa C, Sancho R, Nye E, Spencer-Dene B, Behrens A . The F-box protein Fbw7 is required for cerebellar development. Dev Biol 2011; 358: 201–212.

    CAS  PubMed  Google Scholar 

  192. Wang Z, Fukushima H, Gao D, Inuzuka H, Wan L, Lau AW et al. The two faces of FBW7 in cancer drug resistance. Bioessays 2011; 33: 851–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 2011; 471: 104–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Reavie L, Buckley SM, Loizou E, Takeishi S, Aranda-Orgilles B, Ndiaye-Lobry D et al. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 2013; 23: 362–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006; 9: 287–300.

    CAS  PubMed  Google Scholar 

  196. Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC et al. Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 2006; 7: 67–80.

    CAS  PubMed  Google Scholar 

  197. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    PubMed  PubMed Central  Google Scholar 

  198. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP . GenePattern 2.0. Nat Genet. 2006; 38: 500–501.

    CAS  PubMed  Google Scholar 

  199. Di K, Linskey ME, Bota DA . TRIM11 is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth. Oncogene 2013; 32: 5038–5047.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research from the Swedish Childhood Cancer Foundation (FJS, OS), the Swedish Cancer Society (FJS, OS), the Swedish Research Council (FJS, OS), the Swedish Society of Medicine (FJS), the Swedish Brain Foundation (FJS), Ã…ke Wibergs stiftelse (FJS), Ã…ke Olssons Stiftelse (OS), Lions Cancerforskningsfond (FJS), Stiftelsen Lars Hiertas Minne (FJS), Radiumhemmets Forskningsfonder (OS), Karolinska Institute Foundations (OS) and the Association for International Cancer Research (FJS). We apologize to authors not cited due to space restrictions in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J Swartling.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hede, SM., Savov, V., Weishaupt, H. et al. Oncoprotein stabilization in brain tumors. Oncogene 33, 4709–4721 (2014). https://doi.org/10.1038/onc.2013.445

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.445

Keywords

This article is cited by

Search

Quick links