Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Proof-of-concept rare cancers in drug development: the case for rhabdomyosarcoma

Abstract

Rare diseases typically affect fewer than 200 000 patients annually, yet because thousands of rare diseases exist, the cumulative impact is millions of patients worldwide. Every form of childhood cancer qualifies as a rare disease—including the childhood muscle cancer, rhabdomyosarcoma (RMS). The next few years promise to be an exceptionally good era of opportunity for public–private collaboration for rare and childhood cancers. Not only do certain governmental regulation advantages exist, but these advantages are being made permanent with special incentives for pediatric orphan drug-product development. Coupled with a growing understanding of sarcoma tumor biology, synergy with pharmaceutical muscle disease drug-development programs, and emerging publically available preclinical and clinical tools, the outlook for academic–community–industry partnerships in RMS drug development looks promising.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Institute of Medicine CoARDRaOPD Rare Diseases and Orphan Products: Accelerating Research and Development 2010.

  2. Arndt CA, Crist WM . Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 1999; 341: 342–352.

    Article  CAS  Google Scholar 

  3. Gurney JG, Young JL, Roffers SD, Smith MA, Bunin GR . Soft Tissue Sarcomas. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995. National Cancer Institute, SEER Program, Bethesda, MD, USA, 1999.

    Google Scholar 

  4. Perez EA, Kassira N, Cheung MC, Koniaris LG, Neville HL, Sola JE . Rhabdomyosarcoma in children: a SEER population based study. J Surg Res 2011; 170: e243–e251.

    Google Scholar 

  5. Weihkopf T, Blettner M, Dantonello T, Jung I, Klingebiel T, Koscielniak E et al. Incidence and time trends of soft tissue sarcomas in German children 1985-2004 - a report from the population-based German Childhood Cancer Registry. Eur J Cancer 2008; 44: 432–440.

    Google Scholar 

  6. Ognjanovic S, Linabery AM, Charbonneau B, Ross JA . Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975-2005. Cancer 2009; 115: 4218–4226.

    Google Scholar 

  7. Hawkins DS, Spunt SL, Skapek SX . Children's Oncology Group's 2013 blueprint for research: soft tissue sarcomas. Pediatr Blood Cancer (e-pub ahead of print 19 December 2012; doi:10.1002/pbc.24435).

    Google Scholar 

  8. Breneman JC, Lyden E, Pappo AS, Link MP, Anderson JR, Parham DM et al. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma—a report from the Intergroup Rhabdomyosarcoma Study IV. J Clin Oncol 2003; 21: 78–84.

    Google Scholar 

  9. Williams BA, Williams KM, Doyle J, Stephens D, Greenberg M, Malkin D et al. Metastatic rhabdomyosarcoma: a retrospective review of patients treated at the hospital for sick children between 1989 and 1999. J Pediatr Hematol Oncol 2004; 26: 243–247.

    Google Scholar 

  10. Missiaglia E, Williamson D, Chisholm J, Wirapati P, Pierron G, Petel F et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol 2012; 30: 1670–1677.

    Google Scholar 

  11. Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X et al. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 2007; 21: 1382–1395.

    CAS  Google Scholar 

  12. Rubin BP, Nishijo K, Chen HI, Yi X, Schuetze DP, Pal R et al. Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomyosarcoma. Cancer Cell 2011; 19: 177–191.

    CAS  Google Scholar 

  13. Li FP, Fraumeni JF Jr . Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst 1969; 43: 1365–1373.

    CAS  Google Scholar 

  14. Novartis IfBR. Proof-of-Concept: record productivity at Novartis R&D Available from http://www.nibr.com/newsroom/stories/2010/2010Feb09_PoC-RecordProductivityNovartisRD.shtml. 2012.

  15. Braun MM, Farag-El-Massah S, Xu K, Cote TR . Emergence of orphan drugs in the United States: a quantitative assessment of the first 25 years. Nat Rev Drug Discov 2010; 9: 519–522.

    CAS  Google Scholar 

  16. Kesselheim AS, Myers JA, Avorn J . Characteristics of clinical trials to support approval of orphan vs nonorphan drugs for cancer. JAMA 2011; 305: 2320–2326.

    CAS  Google Scholar 

  17. Gaddipati H, Liu K, Pariser A, Pazdur R . Rare cancer trial design: lessons from FDA approvals. Clin Cancer Res 2012; 18: 5172–5178.

    Google Scholar 

  18. Davis L, Keller C . Integrative biology of rhabdomysarcoma using genetic murine models. AACR Education Book 2012. 205–209.

    Google Scholar 

  19. Robert NJ, Dieras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 2011; 29: 1252–1260.

    CAS  Google Scholar 

  20. Bennani-Baiti IM, Cooper A, Lawlor ER, Kauer M, Ban J, Aryee DN et al. Intercohort gene expression co-analysis reveals chemokine receptors as prognostic indicators in Ewing's sarcoma. Clin Cancer Res 2010; 16: 3769–3778.

    CAS  Google Scholar 

  21. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009; 69: 7385–7392.

    CAS  Google Scholar 

  22. Druker BJ . Imatinib: paradigm or anomaly? Cell Cycle 2004; 3: 833–835.

    CAS  Google Scholar 

  23. Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A et al. Proteasome inhibitors in multiple myeloma: 10 years later. Blood 2012; 120: 947–959.

    CAS  Google Scholar 

  24. Dhimolea E . Canakinumab. MAbs 2010; 2: 3–13.

    Google Scholar 

  25. DeFrancesco L . Seattle Genetics rare cancer drug sails through accelerated approval. Nat Biotechnol 2011; 29: 851–852.

    CAS  Google Scholar 

  26. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R . FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 2007; 12: 1247–1252.

    CAS  Google Scholar 

  27. Thompson CA . FDA approves pralatrexate for treatment of rare lymphoma. Am J Health Syst Pharm 2009; 66: 1890.

    Google Scholar 

  28. Malik SM, Liu K, Qiang X, Sridhara R, Tang S, McGuinn WD Jr et al. Folotyn (pralatrexate injection) for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma: U.S. Food and Drug Administration drug approval summary. Clin Cancer Res 2010; 16: 4921–4927.

    CAS  Google Scholar 

  29. Horton TM, Berg SL . Educational paper. The development of new therapies for pediatric oncology. Eur J Pediatr 2011; 170: 555–559.

    CAS  Google Scholar 

  30. Kantarjian HM, Jeha S, Gandhi V, Wess M, Faderl S . Clofarabine: past, present, and future. Leuk Lymphoma 2007; 48: 1922–1930.

    CAS  Google Scholar 

  31. Sateren WB, Trimble EL, Abrams J, Brawley O, Breen N, Ford L et al. How sociodemographics, presence of oncology specialists, and hospital cancer programs affect accrual to cancer treatment trials. J Clin Oncol 2002; 20: 2109–2117.

    Google Scholar 

  32. Adamson PC . The Children's Oncology Group's five year blueprint for research. Pediatr Blood Cancer (e-pub ahead of print 19 December 2012; doi:10.1002/pbc.24399).

    Google Scholar 

  33. Norris RE, Adamson PC . Challenges and opportunities in childhood cancer drug development. Nat Rev Cancer 2012; 12: 776–782.

    CAS  Google Scholar 

  34. Steinbrook R, Sharfstein JM . The FDA Safety and Innovation Act. JAMA 2012; 308: 1437–1438.

    CAS  Google Scholar 

  35. Kramer DB, Kesselheim AS . User fees and beyond—the FDA Safety and Innovation Act of 2012. N Engl J Med 2012; 367: 1277–1279.

    CAS  Google Scholar 

  36. Food and Drug Administration US. Frequently Asked Questions on Patents and Exclusivity Available from http://www.fda.gov/Drugs/DevelopmentApprovalProcess/ucm079031.htm2012.

  37. Maris JM, Morton CL, Gorlick R, Kolb EA, Lock R, Carol H et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr Blood Cancer 2010; 55: 26–34.

    Google Scholar 

  38. Carol H, Boehm I, Reynolds CP, Kang MH, Maris JM, Morton CL et al. Efficacy and pharmacokinetic/pharmacodynamic evaluation of the Aurora kinase A inhibitor MLN8237 against preclinical models of pediatric cancer. Cancer Chemother Pharmacol 2011; 68: 1291–1304.

    CAS  Google Scholar 

  39. Kids-v-Cancer. Kids v Cancer’s Programs to Promote Pediatric Cancer Drug Development cited 25 December 2012; Available from http://www.kidsvcancer.org/new-drugs/ 2012.

  40. Gore L, DeGregori J, Porter CC . Targeting developmental pathways in children with cancer: what price success? Lancet Oncol 2013; 14: e70–e78.

    Google Scholar 

  41. Malempati S, Hawkins DS . Rhabdomyosarcoma: review of the Children's Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. Pediatr Blood Cancer 2012; 59: 5–10.

    Google Scholar 

  42. Takahashi Y, Oda Y, Kawaguchi K, Tamiya S, Yamamoto H, Suita S et al. Altered expression and molecular abnormalities of cell-cycle-regulatory proteins in rhabdomyosarcoma. Mod Pathol 2004; 17: 660–669.

    CAS  Google Scholar 

  43. Taylor AC, Shu L, Danks MK, Poquette CA, Shetty S, Thayer MJ et al. P53 mutation and MDM2 amplification frequency in pediatric rhabdomyosarcoma tumors and cell lines. Med Pediatr Oncol 2000; 35: 96–103.

    CAS  Google Scholar 

  44. Chen Y, Takita J, Mizuguchi M, Tanaka K, Ida K, Koh K et al. Mutation and expression analyses of the MET and CDKN2A genes in rhabdomyosarcoma with emphasis on MET overexpression. Genes Chromosomes Cancer 2007; 46: 348–358.

    CAS  Google Scholar 

  45. Andrade CR, Takahama A Junior, Nishimoto IN, Kowalski LP, Lopes MA . Rhabdomyosarcoma of the head and neck: a clinicopathological and immunohistochemical analysis of 29 cases. Braz Dent J 2010; 21: 68–73.

    Google Scholar 

  46. Ognjanovic S, Martel G, Manivel C, Olivier M, Langer E, Hainaut P . Low prevalence of TP53 mutations and MDM2 amplifications in pediatric rhabdomyosarcoma. Sarcoma 2012; 2012: 492086.

    Google Scholar 

  47. Ghule P, Kadam PA, Jambhekar N, Bamne M, Pai S, Nair C et al. p53 gene gets altered by various mechanisms: studies in childhood sarcomas and retinoblastoma. Med Sci Monit 2006; 12: BR385–BR396.

    CAS  Google Scholar 

  48. Kusafuka T, Fukuzawa M, Oue T, Komoto Y, Yoneda A, Okada A . Mutation analysis of p53 gene in childhood malignant solid tumors. J Pediatr Surg 1997; 32: 1175–1180.

    CAS  Google Scholar 

  49. Yoo J, Lee HK, Kang CS, Park WS, Lee JY, Shim SI . p53 gene mutations and p53 protein expression in human soft tissue sarcomas. Arch Pathol Lab Med 1997; 121: 395–399.

    CAS  Google Scholar 

  50. Cam H, Griesmann H, Beitzinger M, Hofmann L, Beinoraviciute-Kellner R, Sauer M et al. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 2006; 10: 281–293.

    CAS  Google Scholar 

  51. Iolascon A, Faienza MF, Coppola B, Rosolen A, Basso G, Della Ragione F et al. Analysis of cyclin-dependent kinase inhibitor genes (CDKN2A, CDKN2B, and CDKN2C) in childhood rhabdomyosarcoma. Genes Chromosomes Cancer 1996; 15: 217–222.

    CAS  Google Scholar 

  52. Paulson V, Chandler G, Rakheja D, Galindo RL, Wilson K, Amatruda JF et al. High-resolution array CGH identifies common mechanisms that drive embryonal rhabdomyosarcoma pathogenesis. Genes Chromosomes Cancer 2011; 50: 397–408.

    CAS  Google Scholar 

  53. Dias P, Kumar P, Marsden HB, Gattamaneni HR, Heighway J, Kumar S . N-myc gene is amplified in alveolar rhabdomyosarcomas (RMS) but not in embryonal RMS. Int J Cancer 1990; 45: 593–596.

    CAS  Google Scholar 

  54. Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR . Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004; 18: 2614–2626.

    CAS  Google Scholar 

  55. Agarwal A, MacKenzie R, Oddo J, Vitek MP, Christensen DJ, Druker BJ . Abstract #3757, A novel SET antagonist (OP449) is cytotoxic to cml cells, including the highly-resistant BCR-ABLT315I mutant, and demonstrates enhanced efficacy in combination with ABL tyrosine kinase inhibitors. 53rd ASH annual Meeting and Exposition. American Society of Hematology, San Diego, CA, 2011.

    Google Scholar 

  56. Shalaby T, von Bueren AO, Hürlimann M-L, Fiaschetti G, Castelletti D, Masayuki T et al. Disabling c-Myc in childhood medulloblastoma and atypical teratoid/rhabdoid tumor cells by the potent g-quadruplex interactive agent S2T1-6OTD. Mol Cancer Ther 2010; 9: 167–179.

    CAS  Google Scholar 

  57. Corao DA, Biegel JA, Coffin CM, Barr FG, Wainwright LM, Ernst LM et al. ALK expression in rhabdomyosarcomas: correlation with histologic subtype and fusion status. Pediatr Dev Pathol 2009; 12: 275–283.

    CAS  Google Scholar 

  58. Pillay K, Govender D, Chetty R . ALK protein expression in rhabdomyosarcomas. Histopathology 2002; 41: 461–467.

    CAS  Google Scholar 

  59. Yoshida A, Shibata T, Wakai S, Ushiku T, Tsuta K, Fukayama M et al. Anaplastic lymphoma kinase status in rhabdomyosarcomas. Mod Pathol 2013; 26: 772–781.

    CAS  Google Scholar 

  60. Smithey BE, Pappo AS, Hill DA . C-kit expression in pediatric solid tumors: a comparative immunohistochemical study. Am J Surg Pathol 2002; 26: 486–492.

    Google Scholar 

  61. Cen L, Arnoczky KJ, Hsieh FC, Lin HJ, Qualman SJ, Yu S et al. Phosphorylation profiles of protein kinases in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 2007; 20: 936–946.

    CAS  Google Scholar 

  62. Hou J, Dong J, Sun L, Geng L, Wang J, Zheng J et al. Inhibition of phosphorylated c-Met in rhabdomyosarcoma cell lines by a small molecule inhibitor SU11274. J Transl Med 2011; 9: 64.

    CAS  Google Scholar 

  63. Diomedi-Camassei F, McDowell HP, De Ioris MA, Uccini S, Altavista P, Raschella G et al. Clinical significance of CXC chemokine receptor-4 and c-Met in childhood rhabdomyosarcoma. Clin Cancer Res 2008; 14: 4119–4127.

    CAS  Google Scholar 

  64. Ganti R, Skapek SX, Zhang J, Fuller CE, Wu J, Billups CA et al. Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 2006; 19: 1213–1220.

    CAS  Google Scholar 

  65. Armistead PM, Salganick J, Roh JS, Steinert DM, Patel S, Munsell M et al. Expression of receptor tyrosine kinases and apoptotic molecules in rhabdomyosarcoma: correlation with overall survival in 105 patients. Cancer 2007; 110: 2293–2303.

    CAS  Google Scholar 

  66. Berardi AC, Marsilio S, Rofani C, Salvucci O, Altavista P, Perla FM et al. Up-regulation of EphB and ephrin-B expression in rhabdomyosarcoma. Anticancer Res 2008; 28: 763–769.

    CAS  Google Scholar 

  67. Nordberg J, Mpindi JP, Iljin K, Pulliainen AT, Kallajoki M, Kallioniemi O et al. Systemic analysis of gene expression profiles identifies ErbB3 as a potential drug target in pediatric alveolar rhabdomyosarcoma. PLoS One 2012; 7: e50819.

    CAS  Google Scholar 

  68. Goldstein M, Meller I, Orr-Urtreger A . FGFR1 over-expression in primary rhabdomyosarcoma tumors is associated with hypomethylation of a 5' CpG island and abnormal expression of the AKT1, NOG, and BMP4 genes. Genes Chromosomes Cancer 2007; 46: 1028–1038.

    CAS  Google Scholar 

  69. Hirotsu M, Setoguchi T, Matsunoshita Y, Sasaki H, Nagao H, Gao H et al. Tumour formation by single fibroblast growth factor receptor 3-positive rhabdomyosarcoma-initiating cells. Br J Cancer 2009; 101: 2030–2037.

    CAS  Google Scholar 

  70. Taylor JGt CheukAT, Tsang PS, Chung JY, Song YK, Desai K et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J Clin Invest 2009; 119: 3395–3407.

    Google Scholar 

  71. Marshall AD, van der Ent MA, Grosveld GC . PAX3-FOXO1 and FGFR4 in alveolar rhabdomyosarcoma Mol Carcinog 2012; 51: 807–815.

    Google Scholar 

  72. Shukla N, Ameur N, Yilmaz I, Nafa K, Lau CY, Marchetti A et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res 2012; 18: 748–757.

    CAS  Google Scholar 

  73. Abraham J, Prajapati SI, Nishijo K, Schaffer BS, Taniguchi E, Kilcoyne A et al. Evasion mechanisms to Igf1r inhibition in rhabdomyosarcoma. Mol Cancer Ther 2011; 10: 697–707.

    CAS  Google Scholar 

  74. Cao L, Yu Y, Darko I, Currier D, Mayeenuddin LH, Wan X et al. Addiction to elevated insulin-like growth factor I receptor and initial modulation of the AKT pathway define the responsiveness of rhabdomyosarcoma to the targeting antibody. Cancer Res 2008; 68: 8039–8048.

    CAS  Google Scholar 

  75. Taniguchi E, Nishijo K, McCleish AT, Michalek JE, Grayson MH, Infante AJ et al. PDGFR-A is a therapeutic target in alveolar rhabdomyosarcoma. Oncogene 2008; 27: 6550–6560.

    CAS  Google Scholar 

  76. Blandford MC, Barr FG, Lynch JC, Randall RL, Qualman SJ, Keller C . Rhabdomyosarcomas utilize developmental, myogenic growth factors for disease advantage: a report from the Children's Oncology Group. Pediatr Blood Cancer 2006; 46: 329–338.

    Google Scholar 

  77. Goldstein M, Meller I, Issakov J, Orr-Urtreger A . Novel genes implicated in embryonal, alveolar, and pleomorphic rhabdomyosarcoma: a cytogenetic and molecular analysis of primary tumors. Neoplasia 2006; 8: 332–343.

    CAS  Google Scholar 

  78. Martinelli S, McDowell HP, Vigne SD, Kokai G, Uccini S, Tartaglia M et al. RAS signaling dysregulation in human embryonal rhabdomyosarcoma. Genes Chromosomes Cancer 2009; 48: 975–982.

    CAS  Google Scholar 

  79. Schaaf G, Hamdi M, Zwijnenburg D, Lakeman A, Geerts D, Versteeg R et al. Silencing of SPRY1 triggers complete regression of rhabdomyosarcoma tumors carrying a mutated RAS gene. Cancer Res 2010; 70: 762–771.

    CAS  Google Scholar 

  80. Cen L, Hsieh FC, Lin HJ, Chen CS, Qualman SJ, Lin J . PDK-1/AKT pathway as a novel therapeutic target in rhabdomyosarcoma cells using OSU-03012 compound. Br J Cancer 2007; 97: 785–791.

    CAS  Google Scholar 

  81. Bouron-Dal Soglio D, Rougemont AL, Absi R, Giroux LM, Sanchez R, Barrette S et al. Beta-catenin mutation does not seem to have an effect on the tumorigenesis of pediatric rhabdomyosarcomas. Pediatr Dev Pathol 2009; 12: 371–373.

    Google Scholar 

  82. Tostar U, Malm CJ, Meis-Kindblom JM, Kindblom LG, Toftgard R, Unden AB . Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol 2006; 208: 17–25.

    CAS  Google Scholar 

  83. Pressey JG, Anderson JR, Crossman DK, Lynch JC, Barr FG . Hedgehog pathway activity in pediatric embryonal rhabdomyosarcoma and undifferentiated sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 2011; 57: 930–938.

    Google Scholar 

  84. Roma J, Masia A, Reventos J, Sanchez de Toledo J, Gallego S . Notch pathway inhibition significantly reduces rhabdomyosarcoma invasiveness and mobility in vitro. Clin Cancer Res 2011; 17: 505–513.

    CAS  Google Scholar 

  85. Belyea BC, Naini S, Bentley RC, Linardic CM . Inhibition of the Notch-Hey1 axis blocks embryonal rhabdomyosarcoma tumorigenesis. Clin Cancer Res 2011; 17: 7324–7336.

    CAS  Google Scholar 

  86. Chen CL, Loy A, Cen L, Chan C, Hsieh FC, Cheng G et al. Signal transducer and activator of transcription 3 is involved in cell growth and survival of human rhabdomyosarcoma and osteosarcoma cells. BMC Cancer 2007; 7: 111.

    Google Scholar 

  87. Kikuchi K, Soundararajan A, Zarzabal LA, Weems CR, Nelon LD, Hampton ST et al. Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma. Oncogene 2012; 32: 286–295.

    Google Scholar 

  88. Fine SW, Lisanti MP, Argani P, Li M . Caveolin-3 is a sensitive and specific marker for rhabdomyosarcoma. Appl Immunohistochem Mol Morphol 2005; 13: 231–236.

    CAS  Google Scholar 

  89. Rossi S, Poliani PL, Missale C, Monti E, Fanzani A . Caveolins in rhabdomyosarcoma. J Cell Mol Med 2011; 15: 2553–2568.

    CAS  Google Scholar 

  90. Hosoyama T, Aslam MI, Abraham J, Prajapati SI, Nishijo K, Michalek JE et al. IL-4R drives dedifferentiation, mitogenesis, and metastasis in rhabdomyosarcoma. Clin Cancer Res 2011; 17: 2757–2766.

    CAS  Google Scholar 

  91. Charytonowicz E, Matushansky I, Domenech JD, Castillo-Martin M, Ladanyi M, Cordon-Cardo C et al. PAX7-FKHR fusion gene inhibits myogenic differentiation via NF-kappaB upregulation. Clin Transl Oncol 2012; 14: 197–206.

    CAS  Google Scholar 

  92. Grass B, Wachtel M, Behnke S, Leuschner I, Niggli FK, Schafer BW . Immunohistochemical detection of EGFR, fibrillin-2, P-cadherin and AP2beta as biomarkers for rhabdomyosarcoma diagnostics. Histopathology 2009; 54: 873–879.

    Google Scholar 

  93. Wachtel M, Runge T, Leuschner I, Stegmaier S, Koscielniak E, Treuner J et al. Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J Clin Oncol 2006; 24: 816–822.

    CAS  Google Scholar 

  94. Chadalapaka G, Jutooru I, Sreevalsan S, Pathi S, Kim K, Chen C et al. Inhibition of rhabdomyosarcoma cell and tumor growth by targeting specificity protein (Sp) transcription factors. Int J Cancer 2013; 132: 795–806.

    CAS  Google Scholar 

  95. Ohali A, Avigad S, Naumov I, Goshen Y, Ash S, Yaniv I . Different telomere maintenance mechanisms in alveolar and embryonal rhabdomyosarcoma. Genes Chromosomes Cancer 2008; 47: 965–970.

    CAS  Google Scholar 

  96. Ignatius MS, Chen E, Elpek NM, Fuller AZ, Tenente IM, Clagg R et al. In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell 2012; 21: 680–693.

    CAS  Google Scholar 

  97. Hosur V, Kavirayani A, Riefler J, Carney LM, Lyons B, Gott B et al. Dystrophin and dysferlin double mutant mice: a novel model for rhabdomyosarcoma. Cancer Genet 2012; 205: 232–241.

    CAS  Google Scholar 

  98. Fernandez K, Serinagaoglu Y, Hammond S, Martin LT, Martin PT . Mice lacking dystrophin or alpha sarcoglycan spontaneously develop embryonal rhabdomyosarcoma with cancer-associated p53 mutations and alternatively spliced or mutant Mdm2 transcripts. Am J Pathol 2010; 176: 416–434.

    CAS  Google Scholar 

  99. Camboni M, Hammond S, Martin LT, Martin PT . Induction of a regenerative microenvironment in skeletal muscle is sufficient to induce embryonal rhabdomyosarcoma in p53-deficient mice. J Pathol 2012; 226: 40–49.

    CAS  Google Scholar 

  100. Chamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA . Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J 2007; 21: 2195–2204.

    CAS  Google Scholar 

  101. Lee MH, Jothi M, Gudkov AV, Mal AK . Histone methyltransferase KMT1A restrains entry of alveolar rhabdomyosarcoma cells into a myogenic differentiated state. Cancer Res 2011; 71: 3921–3931.

    CAS  Google Scholar 

  102. Arndt CA, Hammond S, Rodeberg D, Qualman S . Significance of persistent mature rhabdomyoblasts in bladder/prostate rhabdomyosarcoma: Results from IRS IV. J Pediatr Hematol Oncol 2006; 28: 563–567.

    Google Scholar 

  103. Bennani-Baiti IM . Epigenetic and epigenomic mechanisms shape sarcoma and other mesenchymal tumor pathogenesis. Epigenomics 2011; 3: 715–732.

    CAS  Google Scholar 

  104. Romualdi C, De Pitta C, Tombolan L, Bortoluzzi S, Sartori F, Rosolen A et al. Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics 2006; 7: 287.

    Google Scholar 

  105. Simon-Keller K, Barth S, Vincent A, Marx A . Targeting the fetal acetylcholine receptor in rhabdomyosarcoma. Expert Opin Ther Targets 2012; 17: 127–138.

    Google Scholar 

  106. Vernet-der Garabedian B, Lacokova M, Eymard B, Morel E, Faltin M, Zajac J et al. Association of neonatal myasthenia gravis with antibodies against the fetal acetylcholine receptor. J Clin Invest 1994; 94: 555–559.

    CAS  Google Scholar 

  107. Huang E, Rubin BP, Keller C . The long road to immunotherapy for childhood rhabdomyosarcoma. Pediatr Blood Cancer 2011; 57: 899–901.

    Google Scholar 

  108. Conboy MJ, Cerletti M, Wagers AJ, Conboy IM . Immuno-analysis and FACS sorting of adult muscle fiber-associated stem/precursor cells. Methods Mol Biol 2010; 621: 165–173.

    CAS  Google Scholar 

  109. Abraham J, Chua YX, Glover JM, Tyner JW, Loriaux MM, Kilcoyne A et al. An adaptive Src-PDGFRA-Raf axis in rhabdomyosarcoma. Biochem Biophys Res Commun 2012; 426: 363–368.

    CAS  Google Scholar 

  110. Jenkins C, Kan J, Hoatlin ME . Targeting the fanconi anemia pathway to identify tailored anticancer therapeutics. Anemia 2012; 2012: 481583.

    Google Scholar 

  111. Medic S, Rizos H, Ziman M . Differential PAX3 functions in normal skin melanocytes and melanoma cells. Biochem Biophys Res Commun 2011; 411: 832–837.

    CAS  Google Scholar 

  112. Hilari JM, Mangas C, Xi L, Paradelo C, Ferrandiz C, Hughes SJ et al. Molecular staging of pathologically negative sentinel lymph nodes from melanoma patients using multimarker, quantitative real-time rt-PCR. Ann Surg Oncol 2009; 16: 177–185.

    Google Scholar 

  113. Goozner M . Drug approvals 2011: focus on companion diagnostics. J Natl Cancer Inst 2012; 104: 84–86.

    Google Scholar 

  114. Sartori F, Alaggio R, Zanazzo G, Garaventa A, Di Cataldo A, Carli M et al. Results of a prospective minimal disseminated disease study in human rhabdomyosarcoma using three different molecular markers. Cancer 2006; 106: 1766–1775.

    CAS  Google Scholar 

  115. Cao L, Yu Y, Bilke S, Walker RL, Mayeenuddin LH, Azorsa DO et al. Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res 2010; 70: 6497–6508.

    CAS  Google Scholar 

  116. Barber TD, Barber MC, Tomescu O, Barr FG, Ruben S, Friedman TB . Identification of target genes regulated by PAX3 and PAX3-FKHR in embryogenesis and alveolar rhabdomyosarcoma. Genomics 2002; 79: 278–284.

    CAS  Google Scholar 

  117. Barber-Rotenberg JS, Selvanathan SP, Kong Y, Erkizan HV, Snyder TM, Hong SP et al. Single enantiomer of YK-4-279 demonstrates specificity in targeting the oncogene EWS-FLI1. Oncotarget 2012; 3: 172–182.

    Google Scholar 

  118. Chen L, Deshpande AJ, Banka D, Bernt KM, Dias S, Buske C et al. Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l. Leukemia 2013; 27: 813–822.

    CAS  Google Scholar 

  119. Davicioni E, Anderson MJ, Finckenstein FG, Lynch JC, Qualman SJ, Shimada H et al. Molecular classification of rhabdomyosarcoma—genotypic and phenotypic determinants of diagnosis: a report from the Children's Oncology Group. Am J Pathol 2009; 174: 550–564.

    CAS  Google Scholar 

  120. Lae M, Ahn EH, Mercado GE, Chuai S, Edgar M, Pawel BR et al. Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 2007; 212: 143–151.

    CAS  Google Scholar 

  121. Wachtel M, Dettling M, Koscielniak E, Stegmaier S, Treuner J, Simon-Klingenstein K et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004; 64: 5539–5545.

    CAS  Google Scholar 

  122. Nishijo K, Chen QR, Zhang L, McCleish AT, Rodriguez A, Cho MJ et al. Credentialing a preclinical mouse model of alveolar rhabdomyosarcoma. Cancer Res 2009; 69: 2902–2911.

    CAS  Google Scholar 

  123. Whiteford CC, Bilke S, Greer BT, Chen Q, Braunschweig TA, Cenacchi N et al. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res 2007; 67: 32–40.

    CAS  Google Scholar 

  124. Neale G, Su X, Morton CL, Phelps D, Gorlick R, Lock RB et al. Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res 2008; 14: 4572–4583.

    CAS  Google Scholar 

  125. Loh ML, Zhang J, Harvey RC, Roberts K, Payne-Turner D, Kang H et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from The Children's Oncology Group TARGET Project. Blood 2012; 121: 485–488.

    Google Scholar 

  126. Nationwide Children's Hospital Biopathology Center Tissue MicroArrays Available from http://www.nationwidechildrens.org/Document/Get/60387. 2012.

  127. Kikuchi K, Rubin BP, Keller C . Developmental origins of fusion-negative rhabdomyosarcomas. Curr Top Dev Biol 2011; 96: 33–56.

    CAS  Google Scholar 

  128. Schaffer BS, Grayson MH, Wortham JM, Kubicek CB, McCleish AT, Prajapati SI et al. Immune competency of a hairless mouse strain for improved preclinical studies in genetically engineered mice. Mol Cancer Ther 2010; 9: 2354–2364.

    CAS  Google Scholar 

  129. Dupont. Testing Methods Using OncoMouse Transgenic Models of Cancer. http://dupont.t2h.yet2.com/t2h/page/techpak?id=26128&sid=0&abc=0&page=development. "Free academic non-commercial research licenses have been executed with nearly 350 nonprofit universities and research institutions worldwide. Restrictions in these non-commercial research licenses that may have existed in the past limiting the ability for these nonprofit universities and research institutions to form academic/industry partnerships in the field of cancer research are waived by DuPont, and future non-commercial OncoMouse research license agreements with nonprofit universities and research institutions will be issued without such restrictions." 2012.

  130. Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 2007; 49: 928–940.

    Google Scholar 

  131. Chisholm J . Personal Communications 2012.

  132. Mascarenhas L, Lyden ER, Breitfeld PP, Walterhouse DO, Donaldson SS, Paidas CN et al. Randomized phase II window trial of two schedules of irinotecan with vincristine in patients with first relapse or progression of rhabdomyosarcoma: a report from the Children's Oncology Group. J Clin Oncol 2010; 28: 4658–4663.

    CAS  Google Scholar 

  133. Weigel B, Lyden ER, Anderson JR, Galster A, Arndt CA, Michalski J et al. Early results from Children's Oncology Group (COG) ARST0431: intensive multidrug therapy for patients with metastatic rhabdomyosarcoma (RMS). ASCO Annual Meeting: J Clin Oncol 2010; 28: 15s.

    Google Scholar 

  134. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011; 144: 27–40.

    CAS  Google Scholar 

  135. Yang XR, Ng D, Alcorta DA, Liebsch NJ, Sheridan E, Li S et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet 2009; 41: 1176–1178.

    CAS  Google Scholar 

  136. Herper M, Le V, Sharf S 30 under 30, Science & Healthcare: Joshua Sommer, 24, Executive Director, Chordoma Foundation, Forbes Magazine. Available from http://www.forbes.com/special-report/2012/30-under-30/30-under-30_science.html 2012.

  137. Sarcoma Foundation of America Patient Registry Program Available from http://www.curesarcoma.org/index.php/patient_registry/2012.

  138. Alabran JL, Hooper JE, Hill M, Smith SE, Spady KK, Davis LE et al. Overcoming autopsy barriers in pediatric cancer research. Pediatr Blood Cancer 2013; 60: 204–209.

    Google Scholar 

  139. Northwest Sarcoma Foundation Leaving a Legacy Program Available from http://nwsarcoma.org/index.php?option=com_content&view=article&id=380&Itemid=152. 2012.

  140. Spunt SL, Vargas SO, Coffin CM, Skapek SX, Parham DM, Darling J et al. The clinical, research, and social value of autopsy after any cancer death: a perspective from the Children's Oncology Group Soft Tissue Sarcoma Committee. Cancer 2012; 118: 3002–3009.

    Google Scholar 

  141. Carol H, Morton CL, Gorlick R, Kolb EA, Keir ST, Reynolds CP et al. Initial testing (stage 1) of the Akt inhibitor GSK690693 by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 55: 1329–1337.

    Google Scholar 

  142. Wan X, Yeung C, Kim SY, Dolan JG, Ngo VN, Burkett S et al. Identification of FoxM1/Bub1b signaling pathway as a required component for growth and survival of rhabdomyosarcoma. Cancer Res 2012; 72: 5889–5899.

    CAS  Google Scholar 

  143. Rossi S, Poliani PL, Cominelli M, Bozzato A, Vescovi R, Monti E et al. Caveolin 1 is a marker of poor differentiation in rhabdomyosarcoma. Eur J Cancer 2011; 47: 761–772.

    CAS  Google Scholar 

  144. Takaoka E, Sonobe H, Akimaru K, Sakamoto S, Shuin T, Daibata M et al. Multiple sites of highly amplified DNA sequences detected by molecular cytogenetic analysis in HS-RMS-2, a new pleomorphic rhabdomyosarcoma cell line. Am J Cancer Res 2012; 2: 141–152.

    CAS  Google Scholar 

  145. Zhang J, Hu S, Schofield DE, Sorensen PH, Triche TJ . Selective usage of D-type cyclins by Ewing's tumors and rhabdomyosarcomas. Cancer Res 2004; 64: 6026–6034.

    CAS  Google Scholar 

  146. Yoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA et al. Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 2002; 277: 5548–5555.

    CAS  Google Scholar 

  147. Phillips DC, Hunt JT, Moneypenny CG, Maclean KH, McKenzie PP, Harris LC et al. Ceramide-induced G2 arrest in rhabdomyosarcoma (RMS) cells requires p21Cip1/Waf1 induction and is prevented by MDM2 overexpression. Cell Death Differ 2007; 14: 1780–1791.

    CAS  Google Scholar 

  148. Houghton PJ, Maris JM, Keir ST, Gorlick R, Kolb EA, Kang M et al. Abstract#C105. Pediatric Preclinical Testing Program (PPTP) Stage 1 evaluation of the CD56-Targeting antibody-drug conjugate lorvotuzumab mertansine (IMGN901). AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; San Francisco CA2011.

  149. Khatib ZA, Matsushime H, Valentine M, Shapiro DN, Sherr CJ, Look AT . Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res 1993; 53: 5535–5541.

    CAS  Google Scholar 

  150. Fiddler TA, Smith L, Tapscott SJ, Thayer MJ . Amplification of MDM2 inhibits MyoD-mediated myogenesis. Mol Cell Biol 1996; 16: 5048–5057.

    CAS  Google Scholar 

  151. Missiaglia E, Selfe J, Hamdi M, Williamson D, Schaaf G, Fang C et al. Genomic imbalances in rhabdomyosarcoma cell lines affect expression of genes frequently altered in primary tumors: an approach to identify candidate genes involved in tumor development. Genes Chromosomes Cancer 2009; 48: 455–467.

    CAS  Google Scholar 

  152. Rodriguez-Perales S, Martinez-Ramirez A, de Andres SA, Valle L, Urioste M, Benitez J et al. Molecular cytogenetic characterization of rhabdomyosarcoma cell lines. Cancer Genet Cytogenet 2004; 148: 35–43.

    CAS  Google Scholar 

  153. Sharp R, Recio JA, Jhappan C, Otsuka T, Liu S, Yu Y et al. Synergism between INK4a/ARF inactivation and aberrant HGF/SF signaling in rhabdomyosarcomagenesis. Nat Med 2002; 8: 1276–1280.

    CAS  Google Scholar 

  154. Sharpless NE, Ferguson DO, O'Hagan RC, Castrillon DH, Lee C, Farazi PA et al. Impaired nonhomologous end-joining provokes soft tissue sarcomas harboring chromosomal translocations, amplifications, and deletions. Mol Cell 2001; 8: 1187–1196.

    CAS  Google Scholar 

  155. Lock RB, Carol H, Morton CL, Keir ST, Reynolds CP, Kang MH et al. Initial testing of the CENP-E inhibitor GSK923295A by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 58: 916–923.

    Google Scholar 

  156. Landuzzi L, Strippoli P, De Giovanni C, Nicoletti G, Rossi I, Tonelli R et al. Production of stem cell factor and expression of c-kit in human rhabdomyosarcoma cells: lack of autocrine growth modulation. Int J Cancer 1998; 78: 441–445.

    CAS  Google Scholar 

  157. Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E et al. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 2003; 63: 7926–7935.

    CAS  Google Scholar 

  158. Lukasiewicz E, Miekus K, Kijowski J, Drabik G, Wilusz M, Bobis-Wozowicz S et al. Inhibition of rhabdomyosarcoma's metastatic behavior through downregulation of MET receptor signaling. Folia Histochem Cytobiol 2009; 47: 485–489.

    CAS  Google Scholar 

  159. Grymula K, Tarnowski M, Wysoczynski M, Drukala J, Barr FG, Ratajczak J et al. Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer 2010; 127: 2554–2568.

    CAS  Google Scholar 

  160. Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 2002; 100: 2597–2606.

    CAS  Google Scholar 

  161. Miekus K, Jarocha D, Trzyna E, Majka M . Role of I-TAC-binding receptors CXCR3 and CXCR7 in proliferation, activation of intracellular signaling pathways and migration of various tumor cell lines. Folia Histochem Cytobiol 2010; 48: 104–111.

    Google Scholar 

  162. De Giovanni C, Melani C, Nanni P, Landuzzi L, Nicoletti G, Frabetti F et al. Redundancy of autocrine loops in human rhabdomyosarcoma cells: induction of differentiation by suramin. Br J Cancer 1995; 72: 1224–1229.

    CAS  Google Scholar 

  163. De Giovanni C, Landuzzi L, Frabetti F, Nicoletti G, Griffoni C, Rossi I et al. Antisense epidermal growth factor receptor transfection impairs the proliferative ability of human rhabdomyosarcoma cells. Cancer Res 1996; 56: 3898–3901.

    CAS  Google Scholar 

  164. Ricci C, Landuzzi L, Rossi I, De Giovanni C, Nicoletti G, Astolfi A et al. Expression of HER/erbB family of receptor tyrosine kinases and induction of differentiation by glial growth factor 2 in human rhabdomyosarcoma cells. Int J Cancer 2000; 87: 29–36.

    CAS  Google Scholar 

  165. Gorlick R, Kolb EA, Houghton PJ, Morton CL, Phelps D, Schaiquevich P et al. Initial testing (stage 1) of lapatinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2009; 53: 594–598.

    Google Scholar 

  166. Nanni P, Nicoletti G, De Giovanni C, Croci S, Astolfi A, Landuzzi L et al. Development of rhabdomyosarcoma in HER-2/neu transgenic p53 mutant mice. Cancer Res 2003; 63: 2728–2732.

    CAS  Google Scholar 

  167. Yan D, Dong Xda E, Chen X, Wang L, Lu C, Wang J et al. MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J Biol Chem 2009; 284: 29596–29604.

    CAS  Google Scholar 

  168. Liu L, Chen L, Chung J, Huang S . Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 2008; 27: 4998–5010.

    CAS  Google Scholar 

  169. Yu SJ, Zheng L, Ladanyi M, Asa SL, Ezzat S . Sp1-mediated transcriptional control of fibroblast growth factor receptor 4 in sarcomas of skeletal muscle lineage. Clin Cancer Res 2004; 10: 6750–6758.

    CAS  Google Scholar 

  170. Fleischmann A, Jochum W, Eferl R, Witowsky J, Wagner EF . Rhabdomyosarcoma development in mice lacking Trp53 and Fos: tumor suppression by the Fos protooncogene. Cancer Cell 2003; 4: 477–482.

    CAS  Google Scholar 

  171. Tostar U, Toftgard R, Zaphiropoulos PG, Shimokawa T . Reduction of human embryonal rhabdomyosarcoma tumor growth by inhibition of the hedgehog signaling pathway. Genes Cancer 2010; 1: 941–951.

    CAS  Google Scholar 

  172. Eichenmuller M, Hemmerlein B, von Schweinitz D, Kappler R . Betulinic acid induces apoptosis and inhibits hedgehog signalling in rhabdomyosarcoma. Br J Cancer 2010; 103: 43–51.

    CAS  Google Scholar 

  173. Yamanaka H, Oue T, Uehara S, Fukuzawa M . Forskolin, a Hedgehog signal inhibitor, inhibits cell proliferation and induces apoptosis in pediatric tumor cell lines. Mol Med Report 2010; 3: 133–139.

    CAS  Google Scholar 

  174. Nitzki F, Zibat A, Frommhold A, Schneider A, Schulz-Schaeffer W, Braun T et al. Uncommitted precursor cells might contribute to increased incidence of embryonal rhabdomyosarcoma in heterozygous Patched1-mutant mice. Oncogene 2011; 30: 4428–4436.

    CAS  Google Scholar 

  175. Lee Y, Miller HL, Russell HR, Boyd K, Curran T, McKinnon PJ . Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res 2006; 66: 6964–6971.

    CAS  Google Scholar 

  176. Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 2007; 26: 6442–6447.

    CAS  Google Scholar 

  177. Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A . Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 1998; 4: 619–622.

    CAS  Google Scholar 

  178. Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 2006; 66: 10171–10178.

    CAS  Google Scholar 

  179. Santoriello C, Deflorian G, Pezzimenti F, Kawakami K, Lanfrancone L, d'Adda di Fagagna F et al. Expression of H-RASV12 in a zebrafish model of Costello syndrome causes cellular senescence in adult proliferating cells. Dis Model Mech 2009; 2: 56–67.

    CAS  Google Scholar 

  180. Smith MA, Morton CL, Phelps DA, Kolb EA, Lock R, Carol H et al. Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin (17-DMAG, KOS-1022) by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 51: 34–41.

    Google Scholar 

  181. El-Badry OM, Minniti C, Kohn EC, Houghton PJ, Daughaday WH, Helman LJ . Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ 1990; 1: 325–331.

    CAS  Google Scholar 

  182. Shapiro DN, Jones BG, Shapiro LH, Dias P, Houghton PJ . Antisense-mediated reduction in insulin-like growth factor-I receptor expression suppresses the malignant phenotype of a human alveolar rhabdomyosarcoma. J Clin Invest 1994; 94: 1235–1242.

    CAS  Google Scholar 

  183. Minniti CP, Maggi M, Helman LJ . Suramin inhibits the growth of human rhabdomyosarcoma by interrupting the insulin-like growth factor II autocrine growth loop. Cancer Res 1992; 52: 1830–1835.

    CAS  Google Scholar 

  184. Kalebic T, Tsokos M, Helman LJ . In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2. Cancer Res 1994; 54: 5531–5534.

    CAS  Google Scholar 

  185. Mayeenuddin LH, Yu Y, Kang Z, Helman LJ, Cao L . Insulin-like growth factor 1 receptor antibody induces rhabdomyosarcoma cell death via a process involving AKT and Bcl-x(L). Oncogene 2010; 29: 6367–6377.

    CAS  Google Scholar 

  186. Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S et al. Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 2005; 65: 3868–3876.

    CAS  Google Scholar 

  187. Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W et al. BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther 2009; 8: 3341–3349.

    CAS  Google Scholar 

  188. Huang F, Greer A, Hurlburt W, Han X, Hafezi R, Wittenberg GM et al. The mechanisms of differential sensitivity to an insulin-like growth factor-1 receptor inhibitor (BMS-536924) and rationale for combining with EGFR/HER2 inhibitors. Cancer Res 2009; 69: 161–170.

    CAS  Google Scholar 

  189. Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock R, Carol H et al. Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 1190–1197.

    Google Scholar 

  190. Houghton PJ, Morton CL, Gorlick R, Kolb EA, Keir ST, Reynolds CP et al. Initial testing of a monoclonal antibody (IMC-A12) against IGF-1R by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2010; 54: 921–926.

    Google Scholar 

  191. Soundararajan A, Abraham J, Nelon LD, Prajapati SI, Zarzabal LA, Michalek JE et al. 18F-FDG microPET imaging detects early transient response to an IGF1R inhibitor in genetically engineered rhabdomyosarcoma models. Pediatr Blood Cancer 2012; 59: 485–492.

    Google Scholar 

  192. Nanni P, Nicoletti G, Palladini A, Astolfi A, Rinella P, Croci S et al. Opposing control of rhabdomyosarcoma growth and differentiation by myogenin and interleukin 4. Mol Cancer Ther 2009; 8: 754–761.

    CAS  Google Scholar 

  193. Durbin AD, Somers GR, Forrester M, Pienkowska M, Hannigan GE, Malkin D . JNK1 determines the oncogenic or tumor-suppressive activity of the integrin-linked kinase in human rhabdomyosarcoma. J Clin Invest 2009; 119: 1558–1570.

    CAS  Google Scholar 

  194. Wysoczynski M, Miekus K, Jankowski K, Wanzeck J, Bertolone S, Janowska-Wieczorek A et al. Leukemia inhibitory factor: a newly identified metastatic factor in rhabdomyosarcomas. Cancer Res 2007; 67: 2131–2140.

    CAS  Google Scholar 

  195. Keleti J, Quezado MM, Abaza MM, Raffeld M, Tsokos M . The MDM2 oncoprotein is overexpressed in rhabdomyosarcoma cell lines and stabilizes wild-type p53 protein. Am J Pathol 1996; 149: 143–151.

    CAS  Google Scholar 

  196. Miyachi M, Kakazu N, Yagyu S, Katsumi Y, Tsubai-Shimizu S, Kikuchi K et al. Restoration of p53 pathway by nutlin-3 induces cell cycle arrest and apoptosis in human rhabdomyosarcoma cells. Clin Cancer Res 2009; 15: 4077–4084.

    CAS  Google Scholar 

  197. Cheney MD, McKenzie PP, Volk EL, Fan L, Harris LC . MDM2 displays differential activities dependent upon the activation status of NFkappaB. Cancer Biol Ther 2008; 7: 38–44.

    CAS  Google Scholar 

  198. Xu J, Timares L, Heilpern C, Weng Z, Li C, Xu H et al. Targeting wild-type and mutant p53 with small molecule CP-31398 blocks the growth of rhabdomyosarcoma by inducing reactive oxygen species-dependent apoptosis. Cancer Res 2010; 70: 6566–6576.

    CAS  Google Scholar 

  199. Canner JA, Sobo M, Ball S, Hutzen B, DeAngelis S, Willis W et al. MI-63: a novel small-molecule inhibitor targets MDM2 and induces apoptosis in embryonal and alveolar rhabdomyosarcoma cells with wild-type p53. Br J Cancer 2009; 101: 774–781.

    CAS  Google Scholar 

  200. Michaelis M, Rothweiler F, Klassert D, von Deimling A, Weber K, Fehse B et al. Reversal of P-glycoprotein-mediated multidrug resistance by the murine double minute 2 antagonist nutlin-3. Cancer Res 2009; 69: 416–421.

    CAS  Google Scholar 

  201. McKenzie PP, McPake CR, Ashford AA, Vanin EF, Harris LC . MDM2 does not influence p53-mediated sensitivity to DNA-damaging drugs. Mol Cancer Ther 2002; 1: 1097–1104.

    CAS  Google Scholar 

  202. Carol H, Reynolds CP, Kang MH, Keir ST, Maris JM, Gorlick R et al. Initial testing of the MDM2 inhibitor RG7112 by the pediatric preclinical testing program. Pediatr Blood Cancer 2013; 60: 633–641.

    CAS  Google Scholar 

  203. Kolb EA, Gorlick R, Houghton PJ, Morton CL, Neale G, Keir ST et al. Initial testing (stage 1) of AZD6244 (ARRY-142886) by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 55: 668–677.

    Google Scholar 

  204. Hosoi H, Dilling MB, Shikata T, Liu LN, Shu L, Ashmun RA et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res 1999; 59: 886–894.

    CAS  Google Scholar 

  205. Hettmer S, Liu J, Miller CM, Lindsay MC, Sparks CA, Guertin DA et al. Sarcomas induced in discrete subsets of prospectively isolated skeletal muscle cells. Proc Natl Acad Sci USA 2011; 108: 20002–20007.

    CAS  Google Scholar 

  206. Houghton PJ, Morton CL, Kolb EA, Gorlick R, Lock R, Carol H et al. Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 799–805.

    Google Scholar 

  207. Houghton PJ, Gorlick R, Kolb EA, Lock R, Carol H, Morton CL et al. Initial testing (stage 1) of the mTOR kinase inhibitor AZD8055 by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 58: 191–199.

    Google Scholar 

  208. Marampon F, Ciccarelli C, Zani BM . Down-regulation of c-Myc following MEK/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle-derived human tumors. Mol Cancer 2006; 5: 31.

    Google Scholar 

  209. Marampon F, Bossi G, Ciccarelli C, Di Rocco A, Sacchi A, Pestell RG et al. MEK/ERK inhibitor U0126 affects in vitro and in vivo growth of embryonal rhabdomyosarcoma. Mol Cancer Ther 2009; 8: 543–551.

    CAS  Google Scholar 

  210. Ye L, Zhang HY, Wang H, Yang GH, Bu H, Zhang L et al. Effects of transforming growth factor beta 1 on the growth of rhabdomyosarcoma cell line RD. Chin Med J (Engl) 2005; 118: 678–686.

    CAS  Google Scholar 

  211. Shapiro DN, Houghton PJ, Hazelton BJ, Germain GS, Murti KG, Rahman A et al. Morphological and molecular characterization of spontaneous myogenic differentiation in a human rhabdomyosarcoma cell line. Cancer Res 1990; 50: 6002–6009.

    CAS  Google Scholar 

  212. Frascella E, Lenzini E, Schafer BW, Brecevic L, Dorigo E, Toffolatti L et al. Concomitant amplification and expression of PAX7-FKHR and MYCN in a human rhabdomyosarcoma cell line carrying a cryptic t(1;13)(p36;q14). Cancer Genet Cytogenet 2000; 121: 139–145.

    CAS  Google Scholar 

  213. Hayashi Y, Sugimoto T, Horii Y, Hosoi H, Inazawa J, Kemshead JT et al. Characterization of an embryonal rhabdomyosarcoma cell line showing amplification and over-expression of the N-myc oncogene. Int J Cancer 1990; 45: 705–711.

    CAS  Google Scholar 

  214. Raimondi L, Ciarapica R, De Salvo M, Verginelli F, Gueguen M, Martini C et al. Inhibition of Notch3 signalling induces rhabdomyosarcoma cell differentiation promoting p38 phosphorylation and p21(Cip1) expression and hampers tumour cell growth in vitro and in vivo. Cell Death Differ 2012; 19: 871–881.

    CAS  Google Scholar 

  215. Harvey M, McArthur MJ, Montgomery CA Jr., Butel JS, Bradley A, Donehower LA . Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 1993; 5: 225–229.

    CAS  Google Scholar 

  216. Harvey M, McArthur MJ, Montgomery CA Jr, Bradley A, Donehower LA . Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J 1993; 7: 938–943.

    CAS  Google Scholar 

  217. Langenau DM, Keefe MD, Storer NY, Jette CA, Smith AC, Ceol CJ et al. Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish. Oncogene 2008; 27: 4242–4248.

    CAS  Google Scholar 

  218. McDermott U, Ames RY, Iafrate AJ, Maheswaran S, Stubbs H, Greninger P et al. Ligand-dependent platelet-derived growth factor receptor (PDGFR)-alpha activation sensitizes rare lung cancer and sarcoma cells to PDGFR kinase inhibitors. Cancer Res 2009; 69: 3937–3946.

    CAS  Google Scholar 

  219. Reynolds CP, Kang MH, Carol H, Lock R, Gorlick R, Kolb EA et al. Initial testing (stage 1) of the phosphatidylinositol 3' kinase inhibitor, SAR245408 (XL147) by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 60: 791–798.

    Google Scholar 

  220. Gorlick R, Kolb EA, Houghton PJ, Morton CL, Neale G, Keir ST et al. Initial testing (stage 1) of the cyclin dependent kinase inhibitor SCH 727965 (dinaciclib) by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 59: 1266–1274.

    Google Scholar 

  221. Smith MA, Keir ST, Maris JM, Kolb EA, Reynolds CP, Kang MH et al. Abstract#LB-317. Pediatric Preclinical Testing Program (PPTP) evaluation of volasertib (BI 6727). A polo-like kinase (Plk) inhibitor. AACR Annual Meeting. American Association for Cancer Research, Chicago, IL, 2012.

    Google Scholar 

  222. Sarver AL, Li L, Subramanian S . MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 2010; 70: 9570–9580.

    CAS  Google Scholar 

  223. Li HG, Wang Q, Li HM, Kumar S, Parker C, Slevin M et al. PAX3 and PAX3-FKHR promote rhabdomyosarcoma cell survival through downregulation of PTEN. Cancer Lett 2007; 253: 215–223.

    CAS  Google Scholar 

  224. Riuzzi F, Sorci G, Donato R . RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growth. Am J Pathol 2007; 171: 947–961.

    CAS  Google Scholar 

  225. Zhang L, Wang C . PAX3-FKHR transformation increases 26 S proteasome-dependent degradation of p27Kip1, a potential role for elevated Skp2 expression. J Biol Chem 2003; 278: 27–36.

    CAS  Google Scholar 

  226. Smith MA, Carol H, Evans K, Richmond J, Kang M, Reynolds CP et al. Birinapant (TL32711), a small molecule smac mimetic, induces regressions in childhood acute lymphoblastic leukemia (ALL) xenografts that express TNFα and synergizes with TNFα in vitro – a report from the Pediatric Preclinical Testing Program (PPTP). 54th ASH Annual Meeting and Exposition. American Society of Hematology, Atlanta, GA, 2012.

    Google Scholar 

  227. Houghton PJ, Kang MH, Reynolds CP, Morton CL, Kolb EA, Gorlick R et al. Initial testing (stage 1) of LCL161, a SMAC mimetic, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2012; 58: 636–639.

    Google Scholar 

  228. Shor AC, Keschman EA, Lee FY, Muro-Cacho C, Letson GD, Trent JC et al. Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res 2007; 67: 2800–2808.

    CAS  Google Scholar 

  229. Liu A, Liu Y, Xu Z, Yu W, Wang H, Li C et al. Novel small molecule, XZH-5, inhibits constitutive and interleukin-6-induced STAT3 phosphorylation in human rhabdomyosarcoma cells. Cancer Sci 2011; 102: 1381–1387.

    CAS  Google Scholar 

  230. Wei CC, Ball S, Lin L, Liu A, Fuchs JR, Li PK et al. Two small molecule compounds, LLL12 and FLLL32, exhibit potent inhibitory activity on STAT3 in human rhabdomyosarcoma cells. Int J Oncol 2011; 38: 279–285.

    CAS  Google Scholar 

  231. Tostar U, Finta C, Rahman MF, Shimokawa T, Zaphiropoulos PG . Novel mechanism of action on Hedgehog signaling by a suppressor of fused carboxy terminal variant. PLoS One 2012; 7: e37761.

    CAS  Google Scholar 

  232. Ma H, Urquidi V, Wong J, Kleeman J, Goodison S . Telomerase reverse transcriptase promoter regulation during myogenic differentiation of human RD rhabdomyosarcoma cells. Mol Cancer Res 2003; 1: 739–746.

    CAS  Google Scholar 

  233. Wang S, Guo L, Dong L, Li S, Zhang J, Sun M . TGF-beta1 signal pathway may contribute to rhabdomyosarcoma development by inhibiting differentiation. Cancer Sci 2010; 101: 1108–1116.

    CAS  Google Scholar 

  234. Ye L, Zhang H, Zhang L, Yang G, Ke Q, Guo H et al. Effects of RNAi-mediated Smad4 silencing on growth and apoptosis of human rhabdomyosarcoma cells. Int J Oncol 2006; 29: 1149–1157.

    CAS  Google Scholar 

  235. Wang H, Yang GH, Bu H, Zhou Q, Guo LX, Wang SL et al. Systematic analysis of the TGF-beta/Smad signalling pathway in the rhabdomyosarcoma cell line RD. Int J Exp Pathol 2003; 84: 153–163.

    CAS  Google Scholar 

  236. Onisto M, Slongo ML, Gregnanin L, Gastaldi T, Carli M, Rosolen A . Expression and activity of vascular endothelial growth factor and metalloproteinases in alveolar and embryonal rhabdomyosarcoma cell lines. Int J Oncol 2005; 27: 791–798.

    CAS  Google Scholar 

  237. Gee MF, Tsuchida R, Eichler-Jonsson C, Das B, Baruchel S, Malkin D . Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid. Oncogene 2005; 24: 8025–8037.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by R01CA133229 (CK), R01CA15923 (DML), R21CA156056 (DML), the Harvard Stem Cell Institute and a gift from the Ethan Jostad Foundation for Childhood Cancer. We thank M Imran Aslam, Lara Davis, Ailin Jiang, Leanna Mah, Marissa Peterson, Victoria Reinke, Teagen Settlemeyer, Suman Malempati and R Lor Randall for their contributions to and discussions regarding this topic. Important input on cell lines was made by Karoly Szuhai, Beat Schäfer, Frederic Barr, Javed Khan, Corinne Linardic and Peter Houghton. We are grateful for the critical comments of Douglas Hawkins, Malcolm Smith, Idriss Bennani-Baiti, M Simone Nsouli, Parkash Gill, Kathryn Gould, Sandra Smith, Steven Townson, Max Wallace, John Mackintosh, Tommy Pham, Jay Scott, Nadim Nsouli, Christopher Winter and Owen Lockerbie.

Author countributions: CK concepted and designed the study. CK and KK developed the methodology of the study. ES, CBT, KK and CK performed the acquisition of data (generation of Tables). CK and KK performed the analysis and provided interpretation of data. KK, DML and CK wrote, reviewed and/or revised the manuscript. CK supervised the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Keller.

Ethics declarations

Competing interests

CK has received single-time honoraria for scientific presentations at Novartis, Millennium/Takeda Pharmaceutical and GlaxoSmithKline, and has research joint ventures or sponsored research with Novartis and Johnson & Johnson. CK is also a paid consultant to the NCI/CTEP Pediatric Preclinical Testing Program (PPTP). The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolowski, E., Turina, C., Kikuchi, K. et al. Proof-of-concept rare cancers in drug development: the case for rhabdomyosarcoma. Oncogene 33, 1877–1889 (2014). https://doi.org/10.1038/onc.2013.129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.129

Keywords

This article is cited by

Search

Quick links