Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs

Abstract

MicroRNAs (miRs) are a novel class of cellular bioactive molecules with critical functions in the regulation of gene expression in normal biology and disease. MiRs are frequently misexpressed in cancer, with potent biological consequences. However, relatively little is known about miRs in pediatric cancers, including sarcomas. Moreover, the mechanisms behind aberrant miR expression in cancer are poorly understood. Ewing sarcoma is an aggressive pediatric malignancy driven by EWS/Ets fusion oncoproteins, which are gain-of-function transcriptional regulators. We employed stable silencing of EWS/Fli1, the most common of the oncogenic fusions, and global miR profiling to identify EWS/Fli1-regulated miRs with oncogenesis-modifying roles in Ewing sarcoma. In this report, we characterize a group of miRs (100, 125b, 22, 221/222, 27a and 29a) strongly repressed by EWS/Fli1. Strikingly, all of these miRs have predicted targets in the insulin-like growth factor (IGF) signaling pathway, a pivotal driver of Ewing sarcoma oncogenesis. We demonstrate that miRs in this group negatively regulate the expression of multiple pro-oncogenic components of the IGF pathway, namely IGF-1, IGF-1 receptor, mammalian/mechanistic target of rapamycin and ribosomal protein S6 kinase A1. Consistent with tumor-suppressive functions, these miRs manifest growth inhibitory properties in Ewing sarcoma cells. Our studies thus uncover a novel oncogenic mechanism in Ewing sarcoma, involving post-transcriptional derepression of IGF signaling by the EWS/Fli1 fusion oncoprotein via miRs. This novel pathway may be amenable to innovative therapeutic targeting in Ewing sarcoma and other malignancies with activated IGF signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Arvand A, Denny CT . (2001). Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 20: 5747–5754.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benini S, Manara MC, Cerisano V, Perdichizzi S, Strammiello R, Serra M et al. (2004). Contribution of MEK/MAPK and PI3-K signaling pathway to the malignant behavior of Ewing’s sarcoma cells: therapeutic prospects. Int J Cancer 108: 358–366.

    CAS  PubMed  Google Scholar 

  • Cairo S, Wang Y, de Reynies A, Duroure K, Dahan J, Redon MJ et al. (2010). Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci USA 107: 20471–20476.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carriere A, Ray H, Blenis J, Roux PP . (2008). The RSK factors of activating the Ras/MAPK signaling cascade. Front Biosci 13: 4258–4275.

    Article  CAS  PubMed  Google Scholar 

  • Chhabra R, Adlakha YK, Hariharan M, Scaria V, Saini N . (2009). Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One 4: e5848.

    PubMed  PubMed Central  Google Scholar 

  • Chintharlapalli S, Papineni S, Abdelrahim M, Abudayyeh A, Jutooru I, Chadalapaka G et al. (2009). Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18beta-olean-1,12-dien-30-oate in colon cancer cells. Int J Cancer 125: 1965–1974.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cironi L, Riggi N, Provero P, Wolf N, Suva ML, Suva D et al. (2008). IGF1 is a common target gene of Ewing’s sarcoma fusion proteins in mesenchymal progenitor cells. PLoS ONE 3: e2634.

    PubMed  PubMed Central  Google Scholar 

  • Ciuffreda L, Di Sanza C, Incani UC, Milella M . (2010). The mTOR pathway: a new target in cancer therapy. Curr Cancer Drug Targets 10: 484–495.

    CAS  PubMed  Google Scholar 

  • Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV . (2009). Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4: e5279.

    PubMed  PubMed Central  Google Scholar 

  • Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K . (2007). MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67: 8994–9000.

    CAS  PubMed  Google Scholar 

  • Cowden Dahl KD, Dahl R, Kruichak JN, Hudson LG . (2009). The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia 11: 1208–1215.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BN, Hata A . (2009). Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal 7: 18.

    PubMed  PubMed Central  Google Scholar 

  • Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T . (2010). The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer 103: 275–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M et al. (2008). The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68: 2745–2754.

    CAS  PubMed  Google Scholar 

  • Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K et al. (2008). miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378: 492–504.

    Article  CAS  PubMed  Google Scholar 

  • Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y et al. (2007). An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129: 617–631.

    CAS  PubMed  Google Scholar 

  • Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC, Shah AA et al. (2008). Microsatellites as EWS/FLI response elements in Ewing’s sarcoma. Proc Natl Acad Sci USA 105: 10149–10154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16: 498–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebeshuber CA, Zatloukal K, Martinez J . (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10: 400–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gefen N, Binder V, Zaliova M, Linka Y, Morrow M, Novosel A et al. (2010). Hsa-mir-125b-2 is highly expressed in childhood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53. Leukemia 24: 89–96.

    CAS  PubMed  Google Scholar 

  • Ghildiyal M, Zamore PD . (2009). Small silencing RNAs: an expanding universe. Nat Rev Genet 10: 94–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. (2004). The microprocessor complex mediates the genesis of microRNAs. Nature 432: 235–240.

    CAS  PubMed  Google Scholar 

  • Guan Y, Yao H, Zheng Z, Qiu G, Sun K . (2011). MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer 128: 2274–2283.

    CAS  PubMed  Google Scholar 

  • Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB et al. (2010). microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 207: 475–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henson BJ, Bhattacharjee S, O'Dee DM, Feingold E, Gollin SM . (2009). Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer 48: 569–582.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero-Martin D, Osuna D, Ordonez JL, Sevillano V, Martins AS, Mackintosh C et al. (2009). Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer 101: 80–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Luo J, Cai Q, Pan Q, Zeng H, Guo Z et al. (2011). MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer 128: 1758–1769.

    CAS  PubMed  Google Scholar 

  • Im YH, Kim HT, Lee C, Poulin D, Welford S, Sorensen PH et al. (2000). EWS-FLI1, EWS-ERG, and EWS-ETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene. Cancer Res 60: 1536–1540.

    CAS  PubMed  Google Scholar 

  • Inui M, Martello G, Piccolo S . (2010). MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11: 252–263.

    CAS  PubMed  Google Scholar 

  • Janknecht R . (2005). EWS-ETS oncoproteins: the linchpins of Ewing tumors. Gene 363: 1–14.

    CAS  PubMed  Google Scholar 

  • Jedlicka P . (2010). Ewing sarcoma, an enigmatic malignancy of likely progenitor cell origin, driven by transcription factor oncogenic fusions. Int J Clin Exp Pathol 3: 338–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jedlicka P, Sui X, Sussel L, Gutierrez-Hartmann A . (2009). Ets transcription factors control epithelial maturation and transit and crypt-villus morphogenesis in the mammalian intestine. Am J Pathol 174: 1280–1290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Toretsky JA, Scher D, Helman LJ . (2009a). The role of IGF-1R in pediatric malignancies. Oncologist 14: 83–91.

    CAS  PubMed  Google Scholar 

  • Kim VN, Han J, Siomi MC . (2009b). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126–139.

    CAS  PubMed  Google Scholar 

  • Kinsey M, Smith R, Lessnick SL . (2006). NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing’s sarcoma. Mol Cancer Res 4: 851–859.

    CAS  PubMed  Google Scholar 

  • Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137: 1005–1017.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Liang S, Yu H, Zhang J, Ma D, Lu X . (2010). An inhibitory effect of miR-22 on cell migration and invasion in ovarian cancer. Gynecol Oncol 119: 543–548.

    CAS  PubMed  Google Scholar 

  • Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J et al. (2010). MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology 52: 1731–1740.

    CAS  PubMed  Google Scholar 

  • Liu T, Tang H, Lang Y, Liu M, Li X . (2009). MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 273: 233–242.

    CAS  PubMed  Google Scholar 

  • Ludwig JA . (2008). Ewing sarcoma: historical perspectives, current state-of-the-art, and opportunities for targeted therapy in the future. Curr Opin Oncol 20: 412–418.

    PubMed  Google Scholar 

  • Luo W, Gangwal K, Sankar S, Boucher KM, Thomas D, Lessnick SL . (2009). GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing’s sarcoma oncogenesis and therapeutic resistance. Oncogene 28: 4126–4132.

    CAS  PubMed  Google Scholar 

  • Manara MC, Landuzzi L, Nanni P, Nicoletti G, Zambelli D, Lollini PL et al. (2007). Preclinical in vivo study of new insulin-like growth factor-I receptor-specific inhibitor in Ewing’s sarcoma. Clin Cancer Res 13: 1322–1330.

    CAS  PubMed  Google Scholar 

  • Martins AS, Mackintosh C, Martin DH, Campos M, Hernandez T, Ordonez JL et al. (2006). Insulin-like growth factor I receptor pathway inhibition by ADW742, alone or in combination with imatinib, doxorubicin, or vincristine, is a novel therapeutic approach in Ewing tumor. Clin Cancer Res 12: 3532–3540.

    CAS  PubMed  Google Scholar 

  • Mateo-Lozano S, Gokhale PC, Soldatenkov VA, Dritschilo A, Tirado OM, Notario V . (2006). Combined transcriptional and translational targeting of EWS/FLI-1 in Ewing’s sarcoma. Clin Cancer Res 12: 6781–6790.

    CAS  PubMed  Google Scholar 

  • Mayoral RJ, Pipkin ME, Pachkov M, van Nimwegen E, Rao A, Monticelli S . (2009). MicroRNA-221-222 regulate the cell cycle in mast cells. J Immunol 182: 433–445.

    CAS  PubMed  Google Scholar 

  • Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M et al. (2008). The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 3: e4029.

    PubMed  PubMed Central  Google Scholar 

  • Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S . (2007). The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67: 11001–11011.

    CAS  PubMed  Google Scholar 

  • Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P et al. (2009). MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer 45: 3104–3118.

    CAS  PubMed  Google Scholar 

  • Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG et al. (2010). A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 24: 447–463.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naviaux RK, Costanzi E, Haas M, Verma IM . (1996). The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 70: 5701–5705.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG et al. (2008). Chromatin structure analyses identify miRNA promoters. Genes Dev 22: 3172–3183.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel JB, Appaiah HN, Burnett RM, Bhat-Nakshatri P, Wang G, Mehta R et al. (2011). Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene 30: 1290–1301.

    CAS  PubMed  Google Scholar 

  • Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM et al. (2010). Identification of the miR-106b∼25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3: ra29.

    PubMed  PubMed Central  Google Scholar 

  • Porter CC, DeGregori J . (2008). Interfering RNA-mediated purine analog resistance for in vitro and in vivo cell selection. Blood 112: 4466–4474.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prieur A, Tirode F, Cohen P, Delattre O . (2004). EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol 24: 7275–7283.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richter GH, Plehm S, Fasan A, Rossler S, Unland R, Bennani-Baiti IM et al. (2009). EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci U S A 106: 5324–5329.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riggi N, Cironi L, Provero P, Suva ML, Kaloulis K, Garcia-Echeverria C et al. (2005). Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 65: 11459–11468.

    CAS  PubMed  Google Scholar 

  • Riggi N, Stamenkovic I . (2007). The biology of Ewing sarcoma. Cancer Lett 254: 1–10.

    CAS  PubMed  Google Scholar 

  • Schmidt D, Stark R, Wilson MD, Brown GD, Odom DT . (2008). Genome-scale validation of deep-sequencing libraries. PLoS One 3: e3713.

    PubMed  PubMed Central  Google Scholar 

  • Scotlandi K, Benini S, Sarti M, Serra M, Lollini PL, Maurici D et al. (1996). Insulin-like growth factor I receptor-mediated circuit in Ewing’s sarcoma/peripheral neuroectodermal tumor: a possible therapeutic target. Cancer Res 56: 4570–4574.

    CAS  PubMed  Google Scholar 

  • Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S et al. (2005). Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 65: 3868–3876.

    CAS  PubMed  Google Scholar 

  • Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC . (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282: 1479–1486.

    CAS  PubMed  Google Scholar 

  • Shi L, Zhang J, Pan T, Zhou J, Gong W, Liu N et al. (2010). MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res 1312: 120–126.

    CAS  PubMed  Google Scholar 

  • Shi XB, Xue L, Ma AH, Tepper CG, Kung HJ, White RW . (2011). miR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate 71: 538–549.

    CAS  PubMed  Google Scholar 

  • Silvany RE, Eliazer S, Wolff NC, Ilaria Jr RL . (2000). Interference with the constitutive activation of ERK1 and ERK2 impairs EWS/FLI-1-dependent transformation. Oncogene 19: 4523–4530.

    CAS  PubMed  Google Scholar 

  • Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR et al. (2006). Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing’s sarcoma. Cancer Cell 9: 405–416.

    CAS  PubMed  Google Scholar 

  • Sokol NS, Xu P, Jan YN, Ambros V . (2008). Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev 22: 1591–1596.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z . (2009). Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 15: 1443–1461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spahn M, Kneitz S, Scholz CJ, Nico S, Rudiger T, Strobel P et al. (2009). Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 127: 394–403.

    Google Scholar 

  • Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C et al. (2011). miR-99 family of microRNAs suppresses the expression of prostate specific antigen and prostate cancer cell proliferation. Cancer Res 71: 1313–1324.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swarbrick A, Woods SL, Shaw A, Balakrishnan A, Phua Y, Nguyen A et al. (2010). miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 16: 1134–1140.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ting Y, Medina DJ, Strair RK, Schaar DG . (2010). Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. Biochem Biophys Res Commun 394: 606–611.

    CAS  PubMed  Google Scholar 

  • Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O . (2007). Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11: 421–429.

    CAS  PubMed  Google Scholar 

  • Toretsky JA, Thakar M, Eskenazi AE, Frantz CN . (1999). Phosphoinositide 3-hydroxide kinase blockade enhances apoptosis in the Ewing’s sarcoma family of tumors. Cancer Res 59: 5745–5750.

    CAS  PubMed  Google Scholar 

  • Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. (2010). Regression of murine lung tumors by the let-7 microRNA. Oncogene 29: 1580–1587.

    CAS  PubMed  Google Scholar 

  • Trang P, Weidhaas JB, Slack FJ . (2008). MicroRNAs as potential cancer therapeutics. Oncogene 27 (Suppl 2): S52-S57.

    Google Scholar 

  • Visone R, Croce CM . (2009). MiRNAs and cancer. Am J Pathol 174: 1131–1138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FZ, Weber F, Croce C, Liu CG, Liao X, Pellett PE . (2008a). Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82: 9065–9074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J et al. (2008b). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14: 369–381.

    CAS  PubMed  Google Scholar 

  • Wang V, Wu W . (2009). MicroRNA-based therapeutics for cancer. BioDrugs 23: 15–23.

    PubMed  Google Scholar 

  • Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M et al. (2010). Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. Embo J 29: 2147–2160.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M et al. (2007). MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67: 11111–11116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D et al. (2010). Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70: 5923–5930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S . (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11: 228–234.

    CAS  PubMed  Google Scholar 

  • Wong QW, Ching AK, Chan AW, Choy KW, To KF, Lai PB et al. (2010). MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res 16: 867–875.

    CAS  PubMed  Google Scholar 

  • Xia HF, He TZ, Liu CM, Cui Y, Song PP, Jin XH et al. (2009). MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell Physiol Biochem 23: 347–358.

    CAS  PubMed  Google Scholar 

  • Xiong J, Du Q, Liang Z . (2010a). Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene 29: 4980–4988.

    CAS  PubMed  Google Scholar 

  • Xiong J, Yu D, Wei N, Fu H, Cai T, Huang Y et al. (2010b). An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples. FEBS J 277: 1684–1694.

    CAS  PubMed  Google Scholar 

  • Yang L, Hu HM, Zielinska-Kwiatkowska A, Chansky HA . (2010). FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing’s sarcoma cells. Biochem Biophys Res Commun 402: 129–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yee D, Favoni RE, Lebovic GS, Lombana F, Powell DR, Reynolds CP et al. (1990). Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor. J Clin Invest 86: 1806–1814.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P et al. (2009). Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol 34: 1653–1660.

    CAS  PubMed  Google Scholar 

  • Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF et al. (2010a). MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 9: 229.

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Han L, Ge Y, Zhou X, Zhang A, Zhang C et al. (2010b). miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol 36: 913–920.

    CAS  PubMed  Google Scholar 

  • Zhang J, Yang Y, Yang T, Liu Y, Li A, Fu S et al. (2010c). microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer 103: 1215–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P et al. (2010). Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 90: 144–155.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Steve Lessnick for Ewing sarcoma cell lines; James DeGregori and Yosef Refaeli for lentiviral and retroviral reagents; Lynne Bemis, Dawn Cochrane, Heide Ford, Jennifer Richer and Rajeev Vibhakar for helpful suggestions/discussions. Funding for this work was provided by Alex's Lemonade Stand Foundation for Childhood Cancer, the Boettcher Foundation's Webb-Waring Biomedical Research Program, and the University of Colorado Cancer Center and School of Medicine. These studies were inspired by the memory of Zeljko Nikolic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Jedlicka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinsey, E., Parrish, J., Irwin, A. et al. A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs. Oncogene 30, 4910–4920 (2011). https://doi.org/10.1038/onc.2011.197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.197

Keywords

This article is cited by

Search

Quick links