Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease

Abstract

Gap junctions, the channels formed by the connexin (Cx) family of proteins, are responsible for direct intercellular communication. Although connexins are considered as tumor suppressors, their overall role in cancer onset, progression and metastasis is somewhat controversial. This study uses a novel Cx43 mutant mouse model (G60S mice) and cross-breeding strategies to determine the role of Cx43 in all stages of breast tumorigenesis. G60S mice were cross-bred with ErbB2 overexpressing mice, and spontaneous and 7,12-dimethylbenz[α]anthracene (DMBA)-induced tumor development was evaluated. Mice were killed when tumors reached 1 cm3 or when mice showed signs of critical illness. In both spontaneous and DMBA studies, onset of palpable tumors was delayed in G60S mice compared with mice in control groups. Moreover, while tumors from control mice reached the size threshold, most DMBA-exposed Cx43 mutant mice were killed prematurely because of labored breathing, independent of the presence of a palpable tumor. Reduced Cx43 levels in Cx43 mutant mice were accompanied by extensive mammary gland hyperplasia. Lung histology revealed that all Cx43 mutant mice exhibited mammaglobin-positive mammary gland metastases to the lung, and the number of metastases was increased by threefold in Cx43 mutant mice on treatment with DMBA. Thus, while reduced levels of Cx43 delayed the onset of palpable tumors, normal Cx43 levels inhibited mammary gland tumor metastasis to the lungs. Understanding the mechanisms of how Cx43, which is expressed primarily in myoepithelial cells, inhibits mammary gland tumor metastasis is critical as Cx43 is assessed as a candidate for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adriance MC, Inman JL, Petersen OW, Bissell MJ . (2005). Myoepithelial cells: good fences make good neighbors. Breast Cancer Res 7: 190–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allred DC, Medina D . (2008). The relevance of mouse models to understanding the development and progression of human breast cancer. J Mammary Gland Biol Neoplasia 13: 279–288.

    Article  PubMed  Google Scholar 

  • Barsky SH, Karlin NJ . (2005). Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia 10: 249–260.

    Article  PubMed  Google Scholar 

  • Bodenstine TM, Welch DR . (2008). Metastasis suppressors and the tumor microenvironment. Cancer Microenviron 1: 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boggio K, Nicoletti G, Di Carlo E, Cavallo F, Landuzzi L, Melani C et al. (1998). Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J Exp Med 188: 589–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Flora S, Scarfi S, Izzotti A, D'Agostini F, Chang CC, Bagnasco M et al. (2006). Induction by 7,12-dimethylbenz(a)anthracene of molecular and biochemical alterations in transformed human mammary epithelial stem cells, and protection by N-acetylcysteine. Int J Oncol 29: 521–529.

    CAS  PubMed  Google Scholar 

  • El-Sabban ME, Abi-Mosleh LF, Talhouk RS . (2003). Developmental regulation of gap junctions and their role in mammary epithelial cell differentiation. J Mammary Gland Biol Neoplasia 8: 463–473.

    Article  PubMed  Google Scholar 

  • Engel J, Eckel R, Kerr J, Schmidt M, Furstenberger G, Richter R et al. (2003). The process of metastasisation for breast cancer. Eur J Cancer 39: 1794–1806.

    Article  CAS  PubMed  Google Scholar 

  • Flenniken AM, Osborne LR, Anderson N, Ciliberti N, Fleming C, Gittens JE et al. (2005). A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development 132: 4375–4386.

    Article  CAS  PubMed  Google Scholar 

  • Foschini MP, Eusebi V . (1998). Carcinomas of the breast showing myoepithelial cell differentiation. A review of the literature. Virchows Arch 432: 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Gudjonsson T, Adriance MC, Sternlicht MD, Petersen OW, Bissell MJ . (2005). Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia 10: 261–272.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89: 10578–10582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herve JC, Bourmeyster N, Sarrouilhe D, Duffy HS . (2007). Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol 94: 29–65.

    Article  CAS  PubMed  Google Scholar 

  • Hewitt SC, Bocchinfuso WP, Zhai J, Harrell C, Koonce L, Clark J et al. (2002). Lack of ductal development in the absence of functional estrogen receptor alpha delays mammary tumor formation induced by transgenic expression of ErbB2/neu. Cancer Res 62: 2798–2805.

    CAS  PubMed  Google Scholar 

  • Hirschi KK, Xu CE, Tsukamoto T, Sager R . (1996). Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ 7: 861–870.

    CAS  PubMed  Google Scholar 

  • Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell 13: 58–68.

    Article  PubMed  Google Scholar 

  • Jacquemart IC, Springs AE, Chen WY . (2009). Rassf3 is responsible in part for resistance to mammary tumor development in neu transgenic mice. Int J Oncol 34: 517–528.

    CAS  PubMed  Google Scholar 

  • Jamieson S, Going JJ, D'Arcy R, George WD . (1998). Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours. J Pathol 184: 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Kalra J, Shao Q, Qin H, Thomas T, Alaoui-Jamali MA, Laird DW . (2006). Cx26 inhibits breast MDA-MB-435 cell tumorigenic properties by a gap junctional intercellular communication-independent mechanism. Carcinogenesis 27: 2528–2537.

    Article  CAS  PubMed  Google Scholar 

  • Kanczuga-Koda L, Sulkowski S, Lenczewski A, Koda M, Wincewicz A, Baltaziak M et al. (2006). Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J Clin Pathol 59: 429–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laird DW . (2006). Life cycle of connexins in health and disease. Biochem J 394: 527–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laird DW, Fistouris P, Batist G, Alpert L, Huynh HT, Carystinos GD et al. (1999). Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res 59: 4104–4110.

    CAS  PubMed  Google Scholar 

  • Lee SW, Tomasetto C, Paul D, Keyomarsi K, Sager R . (1992). Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines. J Cell Biol 118: 1213–1221.

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Tomasetto C, Sager R . (1991). Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci USA 88: 2825–2829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manias JL, Plante I, Gong XQ, Shao Q, Churko J, Bai D et al. (2008). Fate of connexin43 in cardiac tissue harbouring a disease-linked connexin43 mutant. Cardiovas Res 80: 385–395.

    Article  CAS  Google Scholar 

  • McLachlan E, Manias JL, Gong XQ, Lounsbury CS, Shao Q, Bernier SM et al. (2005). Functional characterization of oculodentodigital dysplasia-associated Cx43 mutants. Cell Commun Adhes 12: 279–292.

    Article  CAS  PubMed  Google Scholar 

  • McLachlan E, Shao Q, Laird DW . (2007). Connexins and gap junctions in mammary gland development and breast cancer progression. J Membr Biol 218: 107–121.

    Article  CAS  PubMed  Google Scholar 

  • Medina D . (2007). Chemical carcinogenesis of rat and mouse mammary glands. Breast Dis 28: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Mese G, Richard G, White TW . (2007). Gap junctions: basic structure and function. J Invest Dermatol 127: 2516–2524.

    Article  CAS  PubMed  Google Scholar 

  • Monaghan P, Clarke C, Perusinghe NP, Moss DW, Chen XY, Evans WH . (1996). Gap junction distribution and connexin expression in human breast. Exp Cell Res 223: 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Nagata K, Masumoto K, Esumi G, Teshiba R, Yoshizaki K, Fukumoto S et al. (2009). Connexin43 plays an important role in lung development. J Pediatr Surg 44: 2296–2301.

    Article  PubMed  Google Scholar 

  • Naoi Y, Miyoshi Y, Taguchi T, Kim SJ, Arai T, Tamaki Y et al. (2007). Connexin26 expression is associated with lymphatic vessel invasion and poor prognosis in human breast cancer. Breast Cancer Res Treat 106: 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Naus CC, Laird DW . (2010). Implications and challenges of connexin connections to cancer. Nat Rev Cancer 10: 435–441.

    Article  CAS  PubMed  Google Scholar 

  • Paznekas WA, Karczeski B, Vermeer S, Lowry RB, Delatycki M, Laurence F et al. (2009). GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum Mutat 30: 724–733.

    Article  CAS  PubMed  Google Scholar 

  • Pitelka DR, Hamamoto ST, Duafala JG, Nemanic MK . (1973). Cell contacts in the mouse mammary gland. I. Normal gland in postnatal development and the secretory cycle. J Cell Biol 56: 797–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plante I, Laird DW . (2008). Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia. Dev Biol 318: 312–322.

    Article  CAS  PubMed  Google Scholar 

  • Plante I, Wallis A, Shao Q, Laird DW . (2010). Milk Secretion and Ejection Are Impaired in the Mammary Gland of Mice Harboring a Cx43 Mutant While Expression and Localization of Tight and Adherens Junction Proteins Remain Unchanged. Biol Reprod 28: 837–847.

    Article  Google Scholar 

  • Rowse GJ, Ritland SR, Gendler SJ . (1998). Genetic modulation of neu proto-oncogene-induced mammary tumorigenesis. Cancer Res 58: 2675–2679.

    CAS  PubMed  Google Scholar 

  • Saunders MM, Seraj MJ, Li Z, Zhou Z, Winter CR, Welch DR et al. (2001). Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61: 1765–1767.

    CAS  PubMed  Google Scholar 

  • Shao Q, Wang H, McLachlan E, Veitch GI, Laird DW . (2005). Down-regulation of Cx43 by retroviral delivery of small interfering RNA promotes an aggressive breast cancer cell phenotype. Cancer Res 65: 2705–2711.

    Article  CAS  PubMed  Google Scholar 

  • Solan JL, Lampe PD . (2005). Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 1711: 154–163.

    Article  CAS  PubMed  Google Scholar 

  • Solan JL, Lampe PD . (2007). Key connexin 43 phosphorylation events regulate the gap junction life cycle. J Membr Biol 217: 35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA et al. (1988). Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80: 200–204.

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht MD . (2006). Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res 8: 201.

    Article  PubMed  Google Scholar 

  • Sternlicht MD, Barsky SH . (1997). The myoepithelial defense: a host defense against cancer. Med Hypotheses 48: 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH . (1997). The human myoepithelial cell is a natural tumor suppressor. Clin Cancer Res 3: 1949–1958.

    CAS  PubMed  Google Scholar 

  • Talhouk RS, Mroue R, Mokalled M, Abi-Mosleh L, Nehme R, Ismail A et al. (2008). Heterocellular interaction enhances recruitment of alpha and beta-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells. Exp Cell Res 314: 3275–3291.

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Jordan K, Simek J, Shao Q, Jedeszko C, Walton P et al. (2005). Mechanisms of Cx43 and Cx26 transport to the plasma membrane and gap junction regeneration. J Cell Sci 118: 4451–4462.

    Article  CAS  PubMed  Google Scholar 

  • Tsubura A, Yoshizawa K, Uehara N, Yuri T, Matsuoka Y . (2007). Multistep mouse mammary tumorigenesis through pre-neoplasia to neoplasia and acquisition of metastatic potential. Med Mol Morphol 40: 9–17.

    Article  PubMed  Google Scholar 

  • van de Wouw AJ, Jansen RL, Speel EJ, Hillen HF . (2003). The unknown biology of the unknown primary tumour: a literature review. Ann Oncol 14: 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Nonaka D . (2010). A study of immunohistochemical differential expression in pulmonary and mammary carcinomas. Mod Pathol 23: 654–661.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Goodale for his technical assistance. We are grateful to Dr Janet Rossant and team at the Centre for Modeling Human Disease (Toronto, ON, Canada) for providing the mouse model. This research was funded by the Canadian Breast Cancer Research Alliance to DWL, and by Fellowships from the Canadian Institutes of Health Research, the Canadian Institutes of Health Research Strategic Training Program and the Fonds de la Recherche en Santé du Quebec to IP. ALA is supported by a Canadian Institutes of Health Research New Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D W Laird.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plante, I., Stewart, M., Barr, K. et al. Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease. Oncogene 30, 1681–1692 (2011). https://doi.org/10.1038/onc.2010.551

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.551

Keywords

This article is cited by

Search

Quick links