Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Opposing effects of hMOF and SIRT1 on H4K16 acetylation and the sensitivity to the topoisomerase II inhibitor etoposide

Abstract

Various inhibitors of histone deacetylase (HDAC) activity can sensitize drug resistant cancer cells to chemotherapeutic agents. However, the mechanisms underlying such effects of distinct HDAC inhibitors (HDACi) remain poorly understood. Here we show that both the HDACi trichostatin A and valproic acid induced a sensitization of multidrug-resistant cancer cells to the topoisomerase II inhibitor etoposide/VP16. This effect was associated with increased acetylation of certain lysines on histones H3 and H4, including lysine 16 on histone H4 (H4K16). Overexpression of the histone acetyltransferase hMOF, known to target H4K16, was sufficient to mimic HDACi treatment on sensitization and H4K16 acetylation, and importantly, small-interfering RNA (siRNA)-mediated knockdown of hMOF abolished the HDACi-mediated sensitizing effects as well as the increase in H4K16 acetylation. Conversely, siRNA-mediated knockdown of the H4K16 deacetylase SIRT1 mimicked HDACi treatment whereas overexpression of SIRT1 abolished H4K16 acetylation and significantly reduced the sensitizing effects of HDACi. Interestingly, the effects of hMOF on H4K16 acetylation and sensitization to the topoisomerase II inhibitor could be directly counteracted by exogenous expression of increasing amounts of SIRT1 and vice versa. Our study results suggest that hMOF and SIRT1 activities are critical parameters in HDACi-mediated sensitization of multidrug-resistant cancer cells to topoisomerase II inhibitor and increased H4K16 acetylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

EX-527:

6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide;

DAPI:

4′,6-diamidino-2-phenylindole

VP16:

etoposide

GFP:

green fluorescent protein

HAT:

histone acetyltransferase

HDAC:

histone deacetylase

HDACi:

HDAC inhibitors

H4K16:

lysine 16 on histone H4

MOF:

males absent on the first

NSCLC:

non-small-cell lung carcinoma

siRNA:

small-interfering RNA

TSA:

trichostatin A

VPA:

valproic acid

References

  • Andersson T, Sodersten E, Duckworth JK, Cascante A, Fritz N, Sacchetti P et al. (2009). CXXC5 is a novel BMP4-regulated modulator of Wnt signaling in neural stem cells. J Biol Chem 284: 3672–3681.

    Article  CAS  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW . (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  • Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G . (2004). Cell death by mitotic catastrophe: a molecular definition. Oncogene 23: 2825–2837.

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB . (2005). Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123: 437–448.

    Article  CAS  PubMed  Google Scholar 

  • Deng CX . (2009). SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci 5: 147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC . (2005). Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45: 495–528.

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Gallego MA, Joseph B, Hemstrom TH, Tamiji S, Mortier L, Kroemer G et al. (2004). Apoptosis-inducing factor determines the chemoresistance of non-small-cell lung carcinomas. Oncogene 23: 6282–6291.

    Article  CAS  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E . (2005). Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Hajji N, Wallenborg K, Vlachos P, Nyman U, Hermanson O, Joseph B . (2008). Combinatorial action of the HDAC inhibitor trichostatin A and etoposide induces caspase-mediated AIF-dependent apoptotic cell death in non-small cell lung carcinoma cells. Oncogene 27: 3134–3144.

    Article  CAS  PubMed  Google Scholar 

  • Hermanson O, Glass CK, Rosenfeld MG . (2002). Nuclear receptor coregulators: multiple modes of modification. Trends Endocrinol Metab 13: 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A et al. (2007). SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67: 6612–6618.

    Article  CAS  PubMed  Google Scholar 

  • Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M et al. (2000). Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102: 463–473.

    Article  CAS  PubMed  Google Scholar 

  • Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim HJ, Glass CK et al. (2007). SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450: 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Jin Q, Yan T, Ge X, Sun C, Shi X, Zhai Q . (2007). Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol 213: 88–97.

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Ekedahl J, Lewensohn R, Marchetti P, Formstecher P, Zhivotovsky B . (2001). Defective caspase-3 relocalization in non-small cell lung carcinoma. Oncogene 20: 2877–2888.

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Marchetti P, Formstecher P, Kroemer G, Lewensohn R, Zhivotovsky B . (2002). Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment. Oncogene 21: 65–77.

    Article  CAS  PubMed  Google Scholar 

  • Karagiannis TC, El-Osta A . (2006). Modulation of cellular radiation responses by histone deacetylase inhibitors. Oncogene 25: 3885–3893.

    Article  CAS  PubMed  Google Scholar 

  • Keshelava N, Seeger RC, Groshen S, Reynolds CP . (1998). Drug resistance patterns of human neuroblastoma cell lines derived from patients at different phases of therapy. Cancer Res 58: 5396–5405.

    CAS  PubMed  Google Scholar 

  • Kyrylenko S, Kyrylenko O, Suuronen T, Salminen A . (2003). Differential regulation of the Sir2 histone deacetylase gene family by inhibitors of class I and II histone deacetylases. Cell Mol Life Sci 60: 1990–1997.

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Liu PY, Marshall GM . (2009). The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res 69: 1702–1705.

    Article  CAS  PubMed  Google Scholar 

  • Minucci S, Pelicci PG . (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6: 38–51.

    Article  CAS  PubMed  Google Scholar 

  • Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551–563.

    Article  CAS  PubMed  Google Scholar 

  • Napper AD, Hixon J, McDonagh T, Keavey K, Pons JF, Barker J et al. (2005). Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem 48: 8045–8054.

    Article  CAS  PubMed  Google Scholar 

  • Neal KC, Pannuti A, Smith ER, Lucchesi JC . (2000). A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. Biochim Biophys Acta 1490: 170–174.

    Article  CAS  PubMed  Google Scholar 

  • Nyman U, Vlachos P, Cascante A, Hermanson O, Zhivotovsky B, Joseph B . (2009). Protein kinase C-dependent phosphorylation regulates the cell cycle-inhibitory function of the p73 carboxy terminus transactivation domain. Mol Cell Biol 29: 1814–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C et al. (2008). The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer 122: 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  • Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN et al. (2006). Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2: e40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider R, Grosschedl R . (2007). Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21: 3027–3043.

    Article  CAS  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL . (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311: 844–847.

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL . (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184–191.

    Article  CAS  PubMed  Google Scholar 

  • Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC . (2005). A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25: 9175–9188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS et al. (2006). Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol 26: 28–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stunkel W, Peh BK, Tan YC, Nayagam VM, Wang X, Salto-Tellez M et al. (2007). Function of the SIRT1 protein deacetylase in cancer. Biotechnol J 2: 1360–1368.

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A et al. (2005). hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25: 6798–6810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vakifahmetoglu H, Olsson M, Tamm C, Heidari N, Orrenius S, Zhivotovsky B . (2008). DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death Differ 15: 555–566.

    Article  CAS  PubMed  Google Scholar 

  • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D . (2004). Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16: 93–105.

    Article  CAS  PubMed  Google Scholar 

  • Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW et al. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20: 1256–1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaquero A, Sternglanz R, Reinberg D . (2007). NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 26: 5505–5520.

    Article  CAS  PubMed  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149–159.

    Article  CAS  PubMed  Google Scholar 

  • Villar-Garea A, Esteller M . (2004). Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer 112: 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E . (2007). SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 27: 149–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank RG Roeder (The Rockefeller University), L Guarente (Massachusetts Institute of Technology) and M Henriksson (Karolinska Institutet) for providing us with hMOF DNA construct, SIRT1 DNA construct and SK-N-BE(2) cell line, respectively, and S Orrenius, T Perlmann and members of Hermanson and Joseph's labs for helpful comments. This work was supported by the Swedish Research Council, the Swedish Cancer Society, the Åke Wiberg Foundation, the Swedish Medical Society, the Karolinska Institutet Foundations (KI Cancer) (BJ and OH), SSF (CEDB & OBOE) and the Swedish Children's Cancer Foundation (OH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Joseph.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajji, N., Wallenborg, K., Vlachos, P. et al. Opposing effects of hMOF and SIRT1 on H4K16 acetylation and the sensitivity to the topoisomerase II inhibitor etoposide. Oncogene 29, 2192–2204 (2010). https://doi.org/10.1038/onc.2009.505

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.505

Keywords

This article is cited by

Search

Quick links