Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The ubiquitin-specific protease USP47 is a novel β-TRCP interactor regulating cell survival

Abstract

Ubiquitin-specific proteases (USPs) are a subclass of cysteine proteases that catalyze the removal of ubiquitin (either monomeric or chains) from substrates, thus counteracting the activity of E3 ubiquitin ligases. Although the importance of USPs in a multitude of processes, from hereditary cancer to neurodegeneration, is well established, our knowledge on their mode of regulation, substrate specificity and biological function is quite limited. In this study we identify USP47 as a novel interactor of the E3 ubiquitin ligase, Skp1/Cul1/F-box protein β-transducin repeat-containing protein (SCFβ-Trcp). We found that both β-Trcp1 and β-Trcp2 bind specifically to USP47, and point mutations in the β-Trcp WD-repeat region completely abolished USP47 binding, indicating an E3-substrate-type interaction. However, unlike canonical β-Trcp substrates, USP47 protein levels were neither affected by silencing of β-Trcp nor modulated in a variety of processes, such as cell-cycle progression, DNA damage checkpoint responses or tumor necrosis factor (TNF) pathway activation. Notably, genetic or siRNA-mediated depletion of USP47 induced accumulation of Cdc25A, decreased cell survival and augmented the cytotoxic effects of anticancer drugs. In conclusion, we showed that USP47, a novel β-Trcp interactor, regulates cell growth and survival, potentially providing a novel target for anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  Google Scholar 

  • Bernassola F, Karin M, Ciechanover A, Melino G . (2008). The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14: 10–21.

    Article  CAS  Google Scholar 

  • Boutros R, Lobjois V, Ducommun B . (2007). CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7: 495–507.

    Article  CAS  Google Scholar 

  • Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV et al. (2003). Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426: 87–91.

    Article  CAS  Google Scholar 

  • Cai Z, Korner M, Tarantino N, Chouaib S . (1997). IkappaB alpha overexpression in human breast carcinoma MCF7 cells inhibits nuclear factor-kappaB activation but not tumor necrosis factor-alpha-induced apoptosis. J Biol Chem 272: 96–101.

    Article  CAS  Google Scholar 

  • Cardozo T, Pagano M . (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5: 739–751.

    Article  CAS  Google Scholar 

  • Chen H, Bagri A, Zupicich JA, Zou Y, Stoeckli E, Pleasure SJ et al. (2000). Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25: 43–56.

    Article  Google Scholar 

  • Ciechanover A, Schwartz AL . (1998). The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc Natl Acad Sci USA 95: 2727–2730.

    Article  CAS  Google Scholar 

  • Davis M, Hatzubai A, Andersen JS, Ben-Shushan E, Fisher GZ, Yaron A et al. (2002). Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev 16: 439–451.

    Article  CAS  Google Scholar 

  • Dehan E, Bassermann F, Guardavaccaro D, Vasiliver-Shamis G, Cohen M, Lowes KN et al. (2009). betaTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. Mol Cell 33: 109–116.

    Article  CAS  Google Scholar 

  • Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M . (2006). S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314: 467–471.

    Article  CAS  Google Scholar 

  • Fong A, Sun SC . (2002). Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100. J Biol Chem 277: 22111–22114.

    Article  CAS  Google Scholar 

  • Frescas D, Pagano M . (2008). Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8: 438–449.

    Article  CAS  Google Scholar 

  • Fuchs SY, Spiegelman VS, Kumar KG . (2004). The many faces of beta-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 23: 2028–2036.

    Article  CAS  Google Scholar 

  • Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T et al. (2008). Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature 452: 365–369.

    Article  CAS  Google Scholar 

  • Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M et al. (2003). Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4: 799–812.

    Article  CAS  Google Scholar 

  • Hershko A, Ciechanover A . (1998). The ubiquitin system. Annu Rev Biochem 67: 425–479.

    Article  CAS  Google Scholar 

  • Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW . (2004). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18: 2573–2580.

    Article  CAS  Google Scholar 

  • Jin J, Shirogane T, Xu L, Nalepa G, Qin J, Elledge SJ et al. (2003). SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev 17: 3062–3074.

    Article  CAS  Google Scholar 

  • Kipreos ET, Pagano M . (2000). The F-box protein family. Genome Biol 1: REVIEWS3002.

    Article  CAS  Google Scholar 

  • Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ et al. (2004). Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 13: 3069–3077.

    Article  CAS  Google Scholar 

  • Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J et al. (2002). Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416: 648–653.

    Article  CAS  Google Scholar 

  • Melino G . (2005). Discovery of the ubiquitin proteasome system and its involvement in apoptosis. Cell Death Differ 12: 1155–1157.

    Article  CAS  Google Scholar 

  • Moazed D, Johnson D . (1996). A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae. Cell 86: 667–677.

    Article  CAS  Google Scholar 

  • Nakayama KI, Nakayama K . (2006). Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6: 369–381.

    Article  CAS  Google Scholar 

  • Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123: 773–786.

    Article  CAS  Google Scholar 

  • Orlowski RZ, Kuhn DJ . (2008). Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14: 1649–1657.

    Article  CAS  Google Scholar 

  • Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE et al. (2006). SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23: 319–329.

    Article  CAS  Google Scholar 

  • Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW . (1997). F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209–219.

    Article  CAS  Google Scholar 

  • Soldatenkov VA, Dritschilo A, Ronai Z, Fuchs SY . (1999). Inhibition of homologue of Slimb (HOS) function sensitizes human melanoma cells for apoptosis. Cancer Res 59: 5085–5088.

    CAS  PubMed  Google Scholar 

  • Stanford WL, Cohn JB, Cordes SP . (2001). Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet 2: 756–768.

    Article  CAS  Google Scholar 

  • Suzuki H, Chiba T, Suzuki T, Fujita T, Ikenoue T, Omata M et al. (2000). Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination. J Biol Chem 275: 2877–2884.

    Article  CAS  Google Scholar 

  • Syljuasen RG, Sorensen CS, Nylandsted J, Lukas C, Lukas J, Bartek J . (2004). Inhibition of Chk1 by CEP-3891 accelerates mitotic nuclear fragmentation in response to ionizing Radiation. Cancer Res 64: 9035–9040.

    Article  CAS  Google Scholar 

  • Tang W, Li Y, Yu D, Thomas-Tikhonenko A, Spiegelman VS, Fuchs SY . (2005). Targeting beta-transducin repeat-containing protein E3 ubiquitin ligase augments the effects of antitumor drugs on breast cancer cells. Cancer Res 65: 1904–1908.

    Article  CAS  Google Scholar 

  • Varshavsky A . (1997). The ubiquitin system. Trends Biochem Sci 22: 383–387.

    Article  CAS  Google Scholar 

  • Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T et al. (2004). M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci USA 101: 4419–4424.

    Article  CAS  Google Scholar 

  • Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP . (2003). Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 11: 1445–1456.

    Article  CAS  Google Scholar 

  • Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM et al. (1998). Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396: 590–594.

    Article  CAS  Google Scholar 

  • Zhang D, Zaugg K, Mak TW, Elledge SJ . (2006). A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126: 529–542.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from EU EPISTEM (LSHB-CT-019067), ‘Alleanza contro il Cancro’ (ACC12/6), MIUR/PRIN (RBIP06LCA9_0023), AIRC (2008-2010_33-08), ISS ‘Program Italia-USA’ N526D5, Italian Human ProteomeNet RBRN07BMCT_007 and Telethon to GM; and grants from the National Institutes of Health (R01-GM57587, R37-CA76584 and R21-CA125173) and Multiple Myeloma Research Foundation to MP. Research described in this article was also supported in part by Philip Morris USA Inc. and Philip Morris International to GM. JRS was supported by the American Cancer Society—Mr and Mrs William G Campbell Postdoctoral Fellowship in Memory of Carolyn Cabott. MP is an Investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Melino.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peschiaroli, A., Skaar, J., Pagano, M. et al. The ubiquitin-specific protease USP47 is a novel β-TRCP interactor regulating cell survival. Oncogene 29, 1384–1393 (2010). https://doi.org/10.1038/onc.2009.430

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.430

Keywords

This article is cited by

Search

Quick links