Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA

Abstract

Helicases are molecular motors that unwind double-stranded DNA or RNA. In addition to unwinding nucleic acids, an important function of these enzymes seems to be the disruption of protein-nucleic acid interactions. Bacteriophage T4 Dda helicase can displace proteins bound to DNA, including streptavidin bound to biotinylated oligonucleotides. We investigated the mechanism of streptavidin displacement by varying the length of the oligonucleotide substrate. We found that a monomeric form of Dda catalyzed streptavidin displacement; however, the activity increased when multiple helicase molecules bound to the biotinylated oligonucleotide. The activity does not result from cooperative binding of Dda to the oligonucleotide. Rather, the increase in activity is a consequence of the directional bias in translocation of individual helicase monomers. Such a bias leads to protein-protein interactions when the lead monomer stalls owing to the presence of the streptavidin block.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determination of the number of nucleotides bound per Dda molecule.
Figure 2: Illustration of streptavidin displacement reaction.
Figure 3: Streptavidin displacement increases as the length of the 3′-biotinylated oligonucleotides increases under single-turnover conditions.
Figure 4: Models for enhanced activity of an assembly of Dda molecules during streptavidin displacement.
Figure 5: Displacement of streptavidin by saturating concentrations of Dda in the absence of a protein trap.
Figure 6: Dda-catalyzed streptavidin displacement observed from the 15-mer oligonucleotide.
Figure 7: Equilibrium binding and dissociation rate constants for the 15-mer.
Figure 8: Model for helicase-catalyzed displacement of streptavidin from biotin (B)-labeled oligonucleotides.

Similar content being viewed by others

References

  1. Delagoutte, E. & von Hippel, P.H. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: structures and properties of isolated helicases. Q. Rev. Biophys. 35, 431–478 (2002).

    Article  CAS  Google Scholar 

  2. Soultanas, P. & Wigley, D.B. Unwinding the 'Gordian knot' of helicase action. Trends Biochem. Sci. 26, 47–54 (2001).

    Article  CAS  Google Scholar 

  3. Patel, S.S. & Picha, K.M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000).

    Article  CAS  Google Scholar 

  4. Lohman, T.M. & Bjornson, K.P. Mechanisms of helicase-catalyzed DNA unwinding. Annu. Rev. Biochem. 65, 169–214 (1996).

    Article  CAS  Google Scholar 

  5. Patel, S.S. & Hingorani, M.M. Oligomeric structure of bacteriophage T7 DNA primase/helicase proteins. J. Biol. Chem. 268, 10668–10675 (1993).

    CAS  PubMed  Google Scholar 

  6. Dong, F., Gogol, E.P. & von Hippel, P.H. The phage T4-coded DNA replication helicase (gp41) forms a hexamer upon activation by nucleoside triphosphate. J. Biol. Chem. 270, 7462–7473 (1995).

    Article  CAS  Google Scholar 

  7. Singleton, M.R., Sawaya, M.R., Ellenberger, T. & Wigley, D.B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).

    Article  CAS  Google Scholar 

  8. Egelman, E.H., Yu, X., Wild, R., Hingorani, M.M. & Patel, S.S. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc. Natl. Acad. Sci. USA 92, 3869–3873 (1995).

    Article  CAS  Google Scholar 

  9. Morris, P.D. & Raney, K.D. DNA helicases displace streptavidin from biotin-labeled oligonucleotides. Biochemistry 38, 5164–5171 (1999).

    Article  CAS  Google Scholar 

  10. Gorbalenya, A. & Koonin, E.V. Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol. 3, 419–429 (1993).

    Article  CAS  Google Scholar 

  11. Mechanic, L.E., Hall, M.C. & Matson, S.W. Escherichia coli DNA helicase II is active as a monomer. J. Biol. Chem. 274, 12488–12498 (1999).

    Article  CAS  Google Scholar 

  12. Runyon, G.T., Wong, I. & Lohman, T.M. Overexpression, purification, DNA binding, and dimerization of the Escherichia coli uvrD gene product (helicase II). Biochemistry 32, 602–612 (1993).

    Article  CAS  Google Scholar 

  13. Ali, J.A., Maluf, N.K. & Lohman, T.M. An oligomeric form of E. coli UvrD is required for optimal helicase activity. J. Mol. Biol. 293, 815–834 (1999).

    Article  CAS  Google Scholar 

  14. Maluf, N.K., Fischer, C.J. & Lohman, T.M. A dimer of Escherichia coli UvrD is the active form of the helicase in vitro. J. Mol. Biol. 325, 913–935 (2003).

    Article  CAS  Google Scholar 

  15. Wong, I., Chao, K.L., Bujalowski, W. & Lohman, T.M. DNA-induced dimerization of the Escherichia coli rep helicase. Allosteric effects of single-stranded and duplex DNA. J. Biol. Chem. 267, 7596–7610 (1992).

    CAS  PubMed  Google Scholar 

  16. Korolev, S., Hsieh, J., Gauss, G.H., Lohman, T.M. & Waksman, G. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90, 635–647 (1997).

    Article  CAS  Google Scholar 

  17. Chao, K.L. & Lohman, T.M. DNA-induced dimerization of the Escherichia coli Rep helicase. J. Mol. Biol. 221, 1165–1181 (1991).

    Article  CAS  Google Scholar 

  18. Cho, H.S. et al. Crystal structure of RNA helicase from genotype 1b hepatitis C virus. A feasible mechanism of unwinding duplex RNA. J. Biol. Chem. 273, 15045–15052 (1998).

    Article  CAS  Google Scholar 

  19. Levin, M.K. & Patel, S.S. The helicase from hepatitis C virus is active as an oligomer. J. Biol. Chem. 274, 31839–31846 (1999).

    Article  CAS  Google Scholar 

  20. Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. & Wigley, D.B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  Google Scholar 

  21. Kim, J.L. et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure, 6, 89–100 (1998).

    Article  CAS  Google Scholar 

  22. Jongeneel, C.V., Formosa, T. & Alberts, B.M. Purification and characterization of the bacteriophage T4 Dda protein. J. Biol. Chem. 259, 12925–12932 (1984).

    CAS  PubMed  Google Scholar 

  23. Hacker, K.J. & Alberts, B.M. Overexpression, purification, sequence analysis, and characterization of the T4 bacteriophage Dda DNA helicase. J. Biol. Chem. 267, 20674–20681 (1992).

    CAS  PubMed  Google Scholar 

  24. Raney, K.D. & Benkovic, S.J. Bacteriophage T4 Dda helicase translocates in a unidirectional fashion on single-stranded DNA. J. Biol. Chem. 270, 22236–22242 (1995).

    Article  CAS  Google Scholar 

  25. Barry, J. & Alberts, B. A role for two DNA helicases in the replication of T4 bacteriophage DNA. J. Biol. Chem. 269, 33063–33068 (1994).

    CAS  PubMed  Google Scholar 

  26. Gauss, P., Park, K., Spencer, T.E. & Hacker, K.J. DNA helicase requirements for DNA replication during bacteriophage T4 infection. J. Bacteriol. 176, 1667–1672 (1994).

    Article  CAS  Google Scholar 

  27. Formosa, T., Burke, R.L. & Alberts, B.M. Affinity purification of bacteriophage T4 proteins essential for DNA replication and genetic recombination. Proc. Natl. Acad. Sci. USA 80, 2442–2446 (1983).

    Article  CAS  Google Scholar 

  28. Kodadek, T. & Alberts, B.M. Stimulation of protein-directed strand exchange by a DNA helicase. Nature 326, 312–314 (1987).

    Article  CAS  Google Scholar 

  29. Bedinger, P., Hochstrasser, M., Jongeneel, C.V. & Alberts, B.M. Properties of the T4 bacteriophage DNA replication apparatus: the T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell 34, 115–123 (1983).

    Article  CAS  Google Scholar 

  30. Jongeneel, C.V., Bedinger, P. & Alberts, B.M. Effects of the bacteriophage T4 Dda protein on DNA synthesis catalyzed by purified T4 replication proteins. J. Biol. Chem. 259, 12933–12938 (1984).

    CAS  PubMed  Google Scholar 

  31. Morris, P.D. et al. Evidence for a functional monomeric form of the bacteriophage T4 DdA helicase. Dda does not form stable oligomeric structures. J. Biol. Chem. 276, 19691–19698 (2001).

    Article  CAS  Google Scholar 

  32. Nanduri, B., Byrd, A.K., Eoff, R.L., Tackett, A.J. & Raney, K.D. Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor. Proc. Natl. Acad. Sci. USA 99, 14722–14727 (2002).

    Article  CAS  Google Scholar 

  33. Eggleston, A.K., O'Neill, T.E., Bradbury, E.M. & Kowalczykowski, S.C. Unwinding of nucleosomal DNA by a DNA helicase. J. Biol. Chem. 270, 2024–2031 (1995).

    Article  CAS  Google Scholar 

  34. Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003).

    Article  CAS  Google Scholar 

  35. Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003).

    Article  CAS  Google Scholar 

  36. Kodadek, T. Inhibition of protein-mediated homologous pairing by a DNA helicase. J. Biol. Chem. 266, 9712–9718 (1991).

    CAS  PubMed  Google Scholar 

  37. Morris, P.D., Tackett, A.J. & Raney, K.D. Biotin-streptavidin-labeled oligonucleotides as probes of helicase mechanisms. Methods 23, 149–159 (2001).

    Article  CAS  Google Scholar 

  38. Yancey-Wrona, J.E. & Matson, S.W. Bound Lac repressor protein differentially inhibits the unwinding reactions catalyzed by DNA helicases. Nucleic Acids Res. 20, 6713–6721 (1992).

    Article  CAS  Google Scholar 

  39. Jankowsky, E., Gross, C.H., Shuman, S. & Pyle, A.M. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001).

    Article  CAS  Google Scholar 

  40. Kowalczykowski, S.C. et al. Cooperative and noncooperative binding of protein ligands to nucleic acid lattices: experimental approaches to the determination of thermodynamic parameters. Biochemistry 25, 1226–1240 (1986).

    Article  CAS  Google Scholar 

  41. Kuzmic, P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).

    Article  CAS  Google Scholar 

  42. Gilbert, S.P. & Mackey, A.T. Kinetics: a tool to study molecular motors. Methods 22, 337–354 (2000).

    Article  CAS  Google Scholar 

  43. Mackey, A.T. & Gilbert, S.P. Moving a microtubule may require two heads: a kinetic investigation of monomeric Ncd. Biochemistry 39, 1346–1355 (2000).

    Article  CAS  Google Scholar 

  44. Vilfan, A. et al. Dynamics and cooperativity of microtubule decoration by the motor protein kinesin. J. Mol. Biol. 312, 1011–1026 (2001).

    Article  CAS  Google Scholar 

  45. Endow, S.A. & Higuchi, H. A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature 406, 913–916 (2000).

    Article  CAS  Google Scholar 

  46. Badoual, M., Julicher, F. & Prost, J. Bidirectional cooperative motion of molecular motors. Proc. Natl. Acad. Sci. USA 99, 6696–6701 (2002).

    Article  CAS  Google Scholar 

  47. Smith, D.E. et al. The bacteriophage straight φ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Article  CAS  Google Scholar 

  48. Yodh, J.G. & Bryant, F.R. Kinetics of ATP hydrolysis during the DNA helicase II-promoted unwinding of duplex DNA. Biochemistry 32, 7765–7771 (1993).

    Article  CAS  Google Scholar 

  49. Carroll, S.S., Benseler, F. & Olsen, D.B. Preparation and use of synthetic oligoribonucleotides as tools for study of viral polymerases. Methods Enzymol. 275, 365–382 (1996).

    Article  CAS  Google Scholar 

  50. Levin, M.K., Wang, Y.-H. & Patel, S.S. The functional interaction of the hepatitis C virus helicase molecules is responsible for unwinding processivity. J. Biol. Chem. Epub ahead of print, 14 April 2004 (doi:10.1074/jbc.M403257200)

Download references

Acknowledgements

This work was supported by research grant GM59400 (K.D.R) from the US National Institutes of Health (NIH) and the University of Arkansas for Medical Sciences graduate student research fund (A.K.B.). Core lab support for DNA synthesis and characterization was provided by NIH COBRE grant P20 RR15569. We thank C. Cameron for careful reading of the manuscript and R. Eoff for assistance with the stopped-flow experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D Raney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrd, A., Raney, K. Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA. Nat Struct Mol Biol 11, 531–538 (2004). https://doi.org/10.1038/nsmb774

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing