Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An EF-hand in the sodium channel couples intracellular calcium to cardiac excitability

Abstract

Sodium channels initiate the electrical cascade responsible for cardiac rhythm, and certain life-threatening arrhythmias arise from Na+ channel dysfunction. We propose a novel mechanism for modulation of Na+ channel function whereby calcium ions bind directly to the human cardiac Na+ channel (hH1) via an EF-hand motif in the C-terminal domain. A functional role for Ca2+ binding was identified electrophysiologically, by measuring Ca2+-induced modulation of hH1. A small hH1 fragment containing the EF-hand motif was shown to form a structured domain and to bind Ca2+ with affinity characteristic of calcium sensor proteins. Mutations in this domain reduce Ca2+ affinity in vitro and the inactivation gating effects of Ca2+ in electrophysiology experiments. These studies reveal the molecular basis for certain forms of long QT syndrome and other arrhythmia-producing syndromes, and suggest a potential pharmacological target for antiarrhythmic drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-based sequence alignment and homology modeling of the proximal region of the hH1 C terminus.
Figure 2: Voltage-dependent availability of hH1 is Ca2+ sensitive.
Figure 3: Structural characterization and calcium binding to hH1-EF, and electrophysiological characterization of Ca2+-dependent inactivation effects caused by hH1 EF-hand mutations.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Echt, D.S. et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. N. Engl. J. Med. 324, 781–788 (1991).

    Article  CAS  Google Scholar 

  2. Bennett, P.B., Yazawa, K., Naomasa, M. & George, A.L. Molecular mechanism for an inherited cardiac arrhythmia. Nature 376, 683–685 (1995).

    Article  CAS  Google Scholar 

  3. Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998).

    Article  CAS  Google Scholar 

  4. Dumaine, R. et al. Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ. Res. 78, 916–924 (1996).

    Article  CAS  Google Scholar 

  5. Wang, D.W., Yazawa, K., George, A.L. & Bennett, P.B. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc. Natl. Acad. Sci. 93, 13200–13205 (1996).

    Article  CAS  Google Scholar 

  6. Bezzina, C. et al. A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ. Res. 85, 1206–1213 (1999).

    Article  CAS  Google Scholar 

  7. Benhorin, J. et al. Identification of a new SCN5A mutation, D1840G, associated with the long QT syndrome. Mutations in brief no. 153. Online. Hum. Mutat. 12, 72 (1998).

    Article  CAS  Google Scholar 

  8. An, R.H. et al. Novel LQT-3 mutation affects Na+ channel activity through interactions between α- and β1-subunits. Circ. Res. 83, 141–146 (1998).

    Article  CAS  Google Scholar 

  9. Wehrens, X.H., Abriel, H., Cabo, C., Benhorin, J. & Kass, R.S. Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na(+) channel α-subunit: a computational analysis. Circulation 102, 584–590 (2000).

    Article  CAS  Google Scholar 

  10. Cormier, J.W., Rivolta, I., Tateyama, M., Yang, A.-S. & Kass, R.S. Secondary structure of the human cardiac Na+ channel C terminus: evidence for a role of helical structures in modulation of channel inactivation. J. Biol. Chem. 277, 9233–9241 (2002).

    Article  CAS  Google Scholar 

  11. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  12. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  13. Peterson, B.Z. et al. Critical determinants of Ca(2+)-dependent inactivation within an EF-hand motif of L-type Ca(2+) channels. Biophys. J. 78, 1906–1920 (2000).

    Article  CAS  Google Scholar 

  14. Tan, H.L. et al. A calcium sensor in the sodium channel modulates cardiac excitability. Nature 415, 442–447 (2002).

    Article  CAS  Google Scholar 

  15. Deschenes, I. et al. Isoform-specific modulation of voltage-gated Na(+) channels by calmodulin. Circ. Res. 90, E49–E57 (2002).

    Article  Google Scholar 

  16. Lewit-Bentley, A. & Rety, S. EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10, 637–643 (2000).

    Article  CAS  Google Scholar 

  17. Shaw, G.S., Hodges, R.S. & Sykes, B.D. Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. Science 249, 280–283 (1990).

    Article  CAS  Google Scholar 

  18. Linse, S. & Forsen, S. Determinants that govern high-affinity calcium binding. Adv. Second Messenger Phosphoprotein Res. 30, 89–151 (1995).

    Article  CAS  Google Scholar 

  19. Strynadka, N.C. & James, M.N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 58, 951–998 (1989).

    Article  CAS  Google Scholar 

  20. Shaw, R.M. & Rudy, Y. Electrophysiologic effects of acute myocardial ischemia. A mechanistic investigation of action potential conduction and conduction failure. Circ. Res. 80, 124–138 (1997).

    Article  CAS  Google Scholar 

  21. Veldkamp, M.W. et al. Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ. Res. 86, E91–E97 (2000).

    Article  CAS  Google Scholar 

  22. Tsien, R.Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404. (1980).

    Article  CAS  Google Scholar 

  23. Christova, P., Cox, J.A. & Craescu, C.T. Ion-induced conformational and stability changes in Nereis sarcoplasmic calcium binding protein: evidence that the APO state is a molten globule. Proteins 40, 177–184 (2000).

    Article  CAS  Google Scholar 

  24. Veeraraghavan, S. et al. Structural independence of the two EF-hand domains of caltractin. J. Biol. Chem. 277, 28564–28571 (2002).

    Article  CAS  Google Scholar 

  25. Theret, I., Baladi, S., Cox, J.A., Sakamoto, H. & Craescu, C.T. Sequential calcium binding to the regulatory domain of calcium vector protein reveals functional asymmetry and a novel mode of structural rearrangement. Biochemistry 39, 7920–7926 (2000).

    Article  CAS  Google Scholar 

  26. Tateyama, M., Rivolta, I., Clancy, C.E. & Kass, R.S. Modulation of cardiac sodium channel gating by protein kinase A can be altered by disease-linked mutation. J. Biol. Chem. 18, 18 (2003).

    Google Scholar 

  27. Zhou, J. et al. Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+-binding function of a motif with similarity to Ca2+-binding domains. Proc. Natl. Acad. Sci. USA 94, 2301–2305. (1997).

    Article  CAS  Google Scholar 

  28. Wu, Y., Dzhura, I., Colbran, R.J. & Anderson, M.E. Calmodulin kinase and a calmodulin-binding 'IQ' domain facilitate L-type Ca2+ current in rabbit ventricular myocytes by a common mechanism. J. Physiol. 535, 679–687 (2001).

    Article  CAS  Google Scholar 

  29. Zuhlke, R.D., Pitt, G.S., Deisseroth, K., Tsien, R.W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    Article  CAS  Google Scholar 

  30. Wei, J. et al. Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation 99, 3165–3171 (1999).

    Article  CAS  Google Scholar 

  31. Tan, H.L. et al. A sodium channel mutation causes isolated cardiac conduction disease. Nature 409, 1043–1047 (2001).

    Article  CAS  Google Scholar 

  32. Bers, D.M., Patton, C.W. & Nuccitelli, R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 40, 3–29 (1994).

    Article  CAS  Google Scholar 

  33. Livingstone, C.D. & Barton, G.J. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput. Appl. Biosci. 9, 745–756. (1993).

    CAS  PubMed  Google Scholar 

  34. Jones, D.T., Taylor, W.R. & Thornton, J.M. A new approach to protein fold recognition. Nature 358, 86–89 (1992).

    Article  CAS  Google Scholar 

  35. Laskowski, R., MacArthur, M.W., Moss, D.S & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  36. Andre, I. & Linse, S. Measurement of Ca2+-binding constants of proteins and presentation of the CaLigator software. Anal. Biochem. 305, 195–205 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Stepanovic for invaluable technical assistance, L. Mizoue for providing pSV278 and N. Pokala (University of California Berkeley) for his generous gift of pSV272. This work was supported by operating grants (to M.E.A., T.P.L., W.J.C. and J.R.B.) from the US National Institutes of Health and a predoctoral fellowship from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Walter J Chazin or Jeffrey R Balser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wingo, T., Shah, V., Anderson, M. et al. An EF-hand in the sodium channel couples intracellular calcium to cardiac excitability. Nat Struct Mol Biol 11, 219–225 (2004). https://doi.org/10.1038/nsmb737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing