Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physical and functional coupling of RNA-dependent RNA polymerase and Dicer in the biogenesis of endogenous siRNAs

Abstract

Many classes of small RNA (sRNA) involved in RNA silencing are generated by double-stranded RNA (dsRNA) processing. Although principles of sRNA biogenesis have emerged, newly identified classes of sRNAs have features that suggest additional biogenesis mechanisms. Tetrahymena thermophila expresses one such class, comprising sRNAs of 23 and 24 nucleotides (nt) with an absolute strand bias in accumulation. Here we demonstrate sRNA production by the T. thermophila Dicer Dcr2 and the RNA-dependent RNA polymerase Rdr1, which purifies as a multisubunit RNA-dependent RNA polymerase complex (RDRC). Dcr2 and RDRC interact, stimulating Dcr2 activity. Moreover, Dcr2 specificity is influenced by RDRC beyond this physical interaction, as Dcr2 generates discrete 23- and 24-nt sRNAs only from dsRNA with a 5′-triphosphate. These findings suggest that sRNA strand bias arises from Dcr2 processing polarity, conferred by physical and functional coupling of RDRC and Dicer enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T. thermophila RDR1 is essential.
Figure 2: Rdr1 assembles as an RDRC.
Figure 3: Dcr2 associates with RDRC.
Figure 4: Dcr2 generates 23- and 24-nt sRNA duplexes from dsRNA products of Rdr1.
Figure 5: RDRC stimulates Dcr2 activity.
Figure 6: Duplex end structure influences Dcr2 cleavage specificity.
Figure 7

Similar content being viewed by others

References

  1. Zamore, P.D. & Haley, B. Ribo-gnome: the big world of small RNAs. Science 309, 1519–1524 (2005).

    Article  CAS  Google Scholar 

  2. Parker, J.S. & Barford, D. Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem. Sci. 31, 622–630 (2006).

    Article  CAS  Google Scholar 

  3. Tomari, Y. & Zamore, P.D. Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005).

    Article  CAS  Google Scholar 

  4. Gregory, R.I., Chendrimada, T.P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  Google Scholar 

  5. Maniataki, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990 (2005).

    Article  CAS  Google Scholar 

  6. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  Google Scholar 

  7. Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16, 69–79 (2004).

    Article  CAS  Google Scholar 

  8. Kim, V.N. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev. 20, 1993–1997 (2006).

    Article  CAS  Google Scholar 

  9. Lee, S.R. & Collins, K. Two classes of endogenous small RNAs in Tetrahymena thermophila. Genes Dev. 20, 28–33 (2006).

    Article  CAS  Google Scholar 

  10. Vagin, V.V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006).

    Article  CAS  Google Scholar 

  11. Ambros, V., Lee, R.C., Lavanway, A., Williams, P.T. & Jewell, D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13, 807–818 (2003).

    Article  CAS  Google Scholar 

  12. Ruby, J.G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006).

    Article  CAS  Google Scholar 

  13. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244 (2007).

    Article  CAS  Google Scholar 

  14. Sijen, T., Steiner, F.A., Thijssen, K.L. & Plasterk, R.H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315, 244–247 (2007).

    Article  CAS  Google Scholar 

  15. Cerutti, H. & Casas-Mollano, J.A. On the origin and functions of RNA-mediated silencing: from protists to man. Curr. Genet. 50, 81–99 (2006).

    Article  CAS  Google Scholar 

  16. Vaucheret, H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 20, 759–771 (2006).

    Article  CAS  Google Scholar 

  17. Mochizuki, K. & Gorovsky, M.A.A. Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev. 19, 77–89 (2005).

    Article  CAS  Google Scholar 

  18. Malone, C.D., Anderson, A.M., Motl, J.A., Rexer, C.H. & Chalker, D.L. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila. Mol. Cell. Biol. 25, 9151–9164 (2005).

    Article  CAS  Google Scholar 

  19. Mochizuki, K. & Gorovsky, M.A. Small RNAs in genome rearrangement in Tetrahymena. Curr. Opin. Genet. Dev. 14, 181–187 (2004).

    Article  CAS  Google Scholar 

  20. Yao, M.C. & Chao, J.L. RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. Annu. Rev. Genet. 39, 537–559 (2005).

    Article  CAS  Google Scholar 

  21. Howard-Till, R.A. & Yao, M.C. Induction of gene silencing by hairpin RNA expression in Tetrahymena thermophila reveals a second small RNA pathway. Mol. Cell. Biol. 26, 8731–8742 (2006).

    Article  CAS  Google Scholar 

  22. Motamedi, M.R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).

    Article  CAS  Google Scholar 

  23. Tang, G., Reinhart, B.J., Bartel, D.P. & Zamore, P.D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003).

    Article  CAS  Google Scholar 

  24. Zhang, H., Kolb, F.A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).

    Article  CAS  Google Scholar 

  25. Macrae, I.J. & Doudna, J.A. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr. Opin. Struct. Biol. 17, 138–145 (2006).

    Article  Google Scholar 

  26. Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. USA 101, 12753–12758 (2004).

    Article  CAS  Google Scholar 

  27. Dlakic, M. DUF283 domain of Dicer proteins has a double-stranded RNA-binding fold. Bioinformatics 22, 2711–2714 (2006).

    Article  CAS  Google Scholar 

  28. Makeyev, E.V. & Bamford, D.H. Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol. Cell 10, 1417–1427 (2002).

    Article  CAS  Google Scholar 

  29. Rossi, J.J. Mammalian Dicer finds a partner. EMBO Rep. 6, 927–929 (2005).

    Article  CAS  Google Scholar 

  30. Leuschner, P.J., Obernosterer, G. & Martinez, J. MicroRNAs: Loquacious speaks out. Curr. Biol. 15, R603–R605 (2005).

    Article  CAS  Google Scholar 

  31. Kurihara, Y., Takashi, Y. & Watanabe, Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12, 206–212 (2006).

    Article  CAS  Google Scholar 

  32. Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P.D. A protein sensor for siRNA asymmetry. Science 306, 1377–1380 (2004).

    Article  CAS  Google Scholar 

  33. Rose, S.D. et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res. 33, 4140–4156 (2005).

    Article  CAS  Google Scholar 

  34. Preall, J.B., He, Z., Gorra, J.M. & Sontheimer, E.J. Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila. Curr. Biol. 16, 530–535 (2006).

    Article  CAS  Google Scholar 

  35. Pontes, O. et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92 (2006).

    Article  CAS  Google Scholar 

  36. Lee, R.C., Hammell, C.M. & Ambros, V. Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA 12, 589–597 (2006).

    Article  CAS  Google Scholar 

  37. Duchaine, T.F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343–354 (2006).

    Article  CAS  Google Scholar 

  38. Gazzani, S., Lawrenson, T., Woodward, C., Headon, D. & Sablowski, R. A link between mRNA turnover and RNA interference in Arabidopsis. Science 306, 1046–1048 (2004).

    Article  CAS  Google Scholar 

  39. Axtell, M.J., Jan, C., Rajagopalan, R. & Bartel, D.P. A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565–577 (2006).

    Article  CAS  Google Scholar 

  40. Allen, E., Xie, Z., Gustafson, A.M. & Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).

    Article  CAS  Google Scholar 

  41. Yoshikawa, M., Peragine, A., Park, M.Y. & Poethig, R.S. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev. 19, 2164–2175 (2005).

    Article  CAS  Google Scholar 

  42. Schramke, V. et al. RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature 435, 1275–1279 (2005).

    Article  CAS  Google Scholar 

  43. Jensen, T.H. & Moore, C. Reviving the exosome. Cell 121, 660–662 (2005).

    Article  CAS  Google Scholar 

  44. Witkin, K.L., Prathapam, R. & Collins, K. Positive and negative regulation of Tetrahymena telomerase holoenzyme. Mol. Cell. Biol. 27, 2074–2083 (2007).

    Article  CAS  Google Scholar 

  45. Vermeulen, A. et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11, 674–682 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Collins laboratory for discussions and comments on this manuscript, and I. Macrae and J. Doudna for technical suggestions. This research was supported by a Howard Hughes Medical Institute Predoctoral Fellowship to S.R.L.

Author information

Authors and Affiliations

Authors

Contributions

S.R.L. performed the experiments, and K.C. and S.R.L. wrote the manuscript.

Corresponding author

Correspondence to Kathleen Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The RDRC and Dcr2 generate characteristic products on different templates. (PDF 8775 kb)

Supplementary Fig. 2

RDRC products can be diced by Dcr2 after double-stranded RNA synthesis. (PDF 1473 kb)

Supplementary Fig. 3

Intact RDRC stimulates dicing by Dcr2. (PDF 3249 kb)

Supplementary Table 1

Summary of mass spectrometry analysis. (PDF 2772 kb)

Supplementary Methods (PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Collins, K. Physical and functional coupling of RNA-dependent RNA polymerase and Dicer in the biogenesis of endogenous siRNAs. Nat Struct Mol Biol 14, 604–610 (2007). https://doi.org/10.1038/nsmb1262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing