Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intermediates revealed in the kinetic mechanism for DNA unwinding by a monomeric helicase

Abstract

Helicases unwind dsDNA during replication, repair and recombination in an ATP-dependent reaction. The mechanism for helicase activity can be studied using oligonucleotide substrates to measure formation of single-stranded (ss) DNA from double-stranded (ds) DNA. This assay provides an 'all-or-nothing' readout because partially unwound intermediates are not detected. We have determined conditions under which an intermediate in the reaction cycle of Dda helicase can be detected by trapping a partially unwound substrate. The appearance of this intermediate supports a model in which each ssDNA product interacts with the helicase after unwinding has occurred. Kinetic analysis indicates that the intermediate appears during a slow step in the reaction cycle that is flanked by faster steps for unwinding. These observations demonstrate a complex mechanism containing nonuniform steps for a monomeric helicase. The potential biological significance of such a mechanism is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The kinetic mechanism describing helicase action.
Figure 2: Dda-catalyzed unwinding of various lengths of dsDNA, performed under single-turnover conditions.
Figure 3: Use of MeP-modified DNA substrates to directly measure the length of dsDNA that melts spontaneously downstream of an active helicase.
Figure 4: An intermediate appears in helicase-catalyzed DNA unwinding of longer substrates in the presence of increased amounts of reannealing trap.
Figure 5: Increasing the ssDNA overhang to accommodate multiple Dda molecules does not prevent formation of the intermediate in helicase-catalyzed DNA unwinding.
Figure 6: Kinetic simulation of two possible mechanisms for Dda-catalyzed DNA unwinding.
Figure 7: Expanded kinetic mechanism for DNA unwinding by the monomeric form of Dda helicase.

Similar content being viewed by others

References

  1. Delagoutte, E. & von Hippel, P.H. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: structures and properties of isolated helicases. Q. Rev. Biophys. 35, 431–478 (2002).

    Article  CAS  Google Scholar 

  2. Delagoutte, E. & von Hippel, P.H. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: integration of helicases into cellular processes. Q. Rev. Biophys. 36, 1–69 (2003).

    Article  CAS  Google Scholar 

  3. von Hippel, P.H. Helicases become mechanistically simpler and functionally more complex. Nat. Struct. Mol. Biol. 11, 494–496 (2004).

    Article  CAS  Google Scholar 

  4. Dillingham, M.S., Wigley, D.B. & Webb, M.R. Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39, 205–212 (2000).

    Article  CAS  Google Scholar 

  5. Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. & Wigley, D.B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  Google Scholar 

  6. Bianco, P.R. & Kowalczykowski, S.C. Translocation step size and mechanism of the RecBC DNA helicase. Nature 405, 368–372 (2000).

    Article  CAS  Google Scholar 

  7. Hacker, K.J. & Alberts, B.M. Overexpression, purification, sequence analysis, and characterization of the T4 bacteriophage dda DNA helicase. J. Biol. Chem. 267, 20674–20681 (1992).

    CAS  PubMed  Google Scholar 

  8. Jongeneel, C.V., Formosa, T. & Alberts, B.M. Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein. J. Biol. Chem. 259, 12925–12932 (1984).

    CAS  PubMed  Google Scholar 

  9. Kadyrov, F.A. & Drake, J.W. UvsX recombinase and Dda helicase rescue stalled bacteriophage T4 DNA replication forks in vitro. J. Biol. Chem. 279, 35735–35740 (2004).

    Article  CAS  Google Scholar 

  10. Ma, Y., Wang, T., Villemain, J.L., Giedroc, D.P. & Morrical, S.W. Dual functions of single-stranded DNA-binding protein in helicase loading at the bacteriophage T4 DNA replication fork. J. Biol. Chem. 279, 19035–19045 (2004).

    Article  CAS  Google Scholar 

  11. Eoff, R.L., Spurling, T.L. & Raney, K.D. Chemically modified DNA substrates implicate the importance of electrostatic interactions for DNA unwinding by Dda helicase. Biochemistry 44, 666–674 (2005).

    Article  CAS  Google Scholar 

  12. Raney, K.D. & Benkovic, S.J. Bacteriophage T4 Dda helicase translocates in a unidirectional fashion on single-stranded DNA. J. Biol. Chem. 270, 22236–22242 (1995).

    Article  CAS  Google Scholar 

  13. Morris, P.D. et al. Evidence for a functional monomeric form of the bacteriophage T4 DdA helicase. Dda does not form stable oligomeric structures. J. Biol. Chem. 276, 19691–19698 (2001).

    Article  CAS  Google Scholar 

  14. Nanduri, B., Byrd, A.K., Eoff, R.L., Tackett, A.J. & Raney, K.D. Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor. Proc. Natl. Acad. Sci. USA 99, 14722–14727 (2002).

    Article  CAS  Google Scholar 

  15. Byrd, A.K. & Raney, K.D. Increasing the length of the single-stranded overhang enhances unwinding of duplex DNA by bacteriophage T4 Dda helicase. Biochemistry 44, 12990–12997 (2005).

    Article  CAS  Google Scholar 

  16. Levin, M.K., Wang, Y.H. & Patel, S.S. The functional interaction of the hepatitis C virus helicase molecules is responsible for unwinding processivity. J. Biol. Chem. 279, 26005–26012 (2004).

    Article  CAS  Google Scholar 

  17. Tackett, A.J., Chen, Y., Cameron, C.E. & Raney, K.D. Multiple full-length NS3 molecules are required for optimal unwinding of oligonucleotide DNA in vitro. J. Biol. Chem. 280, 10797–10806 (2005).

    Article  CAS  Google Scholar 

  18. Byrd, A.K. & Raney, K.D. Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA. Nat. Struct. Mol. Biol. 11, 531–538 (2004).

    Article  CAS  Google Scholar 

  19. Ali, J.A. & Lohman, T.M. Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase. Science 275, 377–380 (1997).

    Article  CAS  Google Scholar 

  20. Lucius, A.L., Maluf, N.K., Fischer, C.J. & Lohman, T.M. General methods for analysis of sequential “n-step” kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding. Biophys. J. 85, 2224–2239 (2003).

    Article  CAS  Google Scholar 

  21. Galletto, R., Jezewska, M.J. & Bujalowski, W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid quench-flow method. J. Mol. Biol. 343, 83–99 (2004).

    Article  CAS  Google Scholar 

  22. Jeong, Y.J., Levin, M.K. & Patel, S.S. The DNA-unwinding mechanism of the ring helicase of bacteriophage T7. Proc. Natl. Acad. Sci. USA 101, 7264–7269 (2004).

    Article  CAS  Google Scholar 

  23. Lucius, A.L. et al. DNA unwinding step-size of E. coli RecBCD helicase determined from single turnover chemical quenched-flow kinetic studies. J. Mol. Biol. 324, 409–428 (2002).

    Article  CAS  Google Scholar 

  24. Okonogi, T.M., Alley, S.C., Harwood, E.A., Hopkins, P.B. & Robinson, B.H. Phosphate backbone neutralization increases duplex DNA flexibility: a model for protein binding. Proc. Natl. Acad. Sci. USA 99, 4156–4160 (2002).

    Article  CAS  Google Scholar 

  25. Lucius, A.L. & Lohman, T.M. Effects of temperature and ATP on the kinetic mechanism and kinetic step-size for E. coli RecBCD helicase-catalyzed DNA unwinding. J. Mol. Biol. 339, 751–771 (2004).

    Article  CAS  Google Scholar 

  26. Lucius, A.L., Jason, W.C. & Lohman, T.M. Fluorescence stopped-flow studies of single turnover kinetics of E. coli RecBCD helicase-catalyzed DNA unwinding. J. Mol. Biol. 339, 731–750 (2004).

    Article  CAS  Google Scholar 

  27. Perkins, T.T., Li, H.W., Dalal, R.V., Gelles, J. & Block, S.M. Forward and reverse motion of single RecBCD molecules on DNA. Biophys. J. 86, 1640–1648 (2004).

    Article  CAS  Google Scholar 

  28. Levin, M.K., Gurjar, M. & Patel, S.S. A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase. Nat. Struct. Mol. Biol. 12, 429–435 (2005).

    Article  CAS  Google Scholar 

  29. Tackett, A.J., Morris, P.D., Dennis, R., Goodwin, T.E. & Raney, K.D. Unwinding of unnatural substrates by a DNA helicase. Biochemistry 40, 543–548 (2001).

    Article  CAS  Google Scholar 

  30. Galletto, R., Jezewska, M.J. & Bujalowski, W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: the effect of the 3′ arm and the stability of the dsDNA on the unwinding activity of the Escherichia coli DnaB helicase. J. Mol. Biol. 343, 101–114 (2004).

    Article  CAS  Google Scholar 

  31. Arana, M.E., Haq, B., Tanguy Le, G.N. & Boehmer, P.E. Modulation of the herpes simplex virus type-1 UL9 DNA helicase by its cognate single-strand DNA-binding protein, ICP8. J. Biol. Chem. 276, 6840–6845 (2001).

    Article  CAS  Google Scholar 

  32. He, X. & Lehman, I.R. Unwinding of a herpes simplex virus type 1 origin of replication (Ori(S)) by a complex of the viral origin binding protein and the single-stranded DNA binding protein. J. Virol. 74, 5726–5728 (2000).

    Article  CAS  Google Scholar 

  33. Lee, S.S. & Lehman, I.R. Unwinding of the box I element of a herpes simplex virus type 1 origin by a complex of the viral origin binding protein, single-strand DNA binding protein, and single-stranded DNA. Proc. Natl. Acad. Sci. USA 94, 2838–2842 (1997).

    Article  CAS  Google Scholar 

  34. Serebrov, V. & Pyle, A.M. Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase. Nature 430, 476–480 (2004).

    Article  CAS  Google Scholar 

  35. Kawaoka, J., Jankowsky, E. & Pyle, A.M. Backbone tracking by the SF2 helicase NPH-II. Nat. Struct. Mol. Biol. 11, 526–530 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank W. Bujalowski and A.L. Lucius for helpful discussions regarding general aspects of data analysis for DNA-unwinding reactions, with special thanks to A.L. Lucius for providing the initial Scientist script describing the inverse Laplace transform of Scheme 1. We would also like to thank M.K. Levin for helpful discussions. This work was supported by US National Institutes of Health grant R01 GM59400 (to K.D.R.) and the University of Arkansas for Medical Sciences Committee for Allocation of Graduate Student Research Funds (R.L.E.). Core facility support was provided by US National Institutes of Health grant P20 RR15569 (to F. Millet, P.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D Raney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Position of the reannealing trap does not affect the appearance of the peak in ssDNA product. (PDF 72 kb)

Supplementary Fig. 2

Lowering the concentration of ATP slows the observed rate of helicase-catalyzed unwinding and delays the appearance of the intermediate. (PDF 54 kb)

Supplementary Fig. 3

Decreasing the concentration of ATP decreases the observed unwinding rate but does not affect the burst amplitude of ssDNA product. (PDF 53 kb)

Supplementary Fig. 4

Comparison of simulated eight-step time course with experimental unwinding data at low [ATP]. (PDF 60 kb)

Supplementary Fig. 5

Dda-catalyzed unwinding of a 120:60–mer results in the appearance of the trappable intermediate. (PDF 70 kb)

Supplementary Methods (PDF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eoff, R., Raney, K. Intermediates revealed in the kinetic mechanism for DNA unwinding by a monomeric helicase. Nat Struct Mol Biol 13, 242–249 (2006). https://doi.org/10.1038/nsmb1055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing